Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer.

  • Wenjuan Mo‎ et al.
  • PloS one‎
  • 2013‎

MicroRNAs (miRNAs) have been recognized as significantly involved in prostate cancer (PCa). Since androgen receptor (AR) plays a central role in PCa carcinogenesis and progression, it is imperative to systematically elucidate the causal association between AR and miRNAs, focusing on the molecular mechanisms by which miRNAs mediate AR signalling. In this study, we performed a series of time-course microarrays to observe the dynamic genome-wide expressions of mRNAs and miRNAs in parallel in hormone-sensitive prostate cancer LNCaP cells stimulated by androgen. Accordingly, we introduced Response Score to identify AR target miRNAs, as well as Modulation Score to identify miRNA target mRNAs. Based on theoretical identification and experimental validation, novel mechanisms addressing cell viability in PCa were unravelled for 3 miRNAs newly recognized as AR targets. (1) miR-19a is directly up-regulated by AR, and represses SUZ12, RAB13, SC4MOL, PSAP and ABCA1, respectively. (2) miR-27a is directly up-regulated by AR, and represses ABCA1 and PDS5B. (3) miR-133b is directly up-regulated by AR, and represses CDC2L5, PTPRK, RB1CC1, and CPNE3, respectively. Moreover, we found miR-133b is essential to PCa cell survival. Our study gives certain clues on miRNAs mediated AR signalling to cell viability by influencing critical pathways, especially by breaking through androgen's growth restriction effect on normal prostate tissue.


MicroRNA-19a acts as a prognostic marker and promotes prostate cancer progression via inhibiting VPS37A expression.

  • Fangqiu Fu‎ et al.
  • Oncotarget‎
  • 2018‎

Prostate cancer (PCa) is a leading cause of cancer-related deaths among males worldwide. However, the molecular mechanisms underlying the progression of PCa remain unclear. Despite several reported miRNAs in prostate cancer, these reports lacked system-level identification of differentially expressed miRNAs in large sample size. Moreover, it's still largely unknown how miRNAs result in tumorigenesis and progression of PCa. Therefore, by analyzing three public databases, we identified 16 upregulated miRNAs and 13 downregulated miRNAs, and validated miR-19a was one of the most upregulated miRNAs using qRT-PCR. The dual-luciferase reporter assays indicated VPS37A was a potential target of miR-19a. Functional assays revealed miR-19a served as an oncogene by inhibiting VPS37A. Notably, a significant inverse correlation of miR-19a and VPS37A expression was observed in PCa specimens. Moreover, miR-19a-high and VPS37A-low phenotypes were associated with poor prognosis with biochemical recurrence-free probability. In this study, we confirmed the oncogenic role of miR-19a via targeting VPS37A in PCa, identifying miR-19a and VPS37A as diagnosis and therapeutic biomarkers for PCa.


Comprehensive Characterization of Androgen-Responsive circRNAs in Prostate Cancer.

  • Zhe Kong‎ et al.
  • Life (Basel, Switzerland)‎
  • 2021‎

The androgen receptor (AR) signaling pathway plays an important role in the initiation and progression of prostate cancer. Circular RNAs (circRNAs), the novel noncoding RNAs without 5' to 3' polarity or 3' poly (A), play an important role in multiple diseases. However, the potential roles of androgen-responsive circRNAs in prostate cancer remain unclear. In this study, we identified 3237 androgen-responsive circRNAs and 1954 androgen-responsive mRNAs after dihydrotestosterone (DHT) stimulation using microarray. Among them, the expression of 1296 androgen-responsive circRNAs was consistent with that of their parent genes, and we thought AR might regulate the expression of these circRNAs at the transcriptional level. In addition, 1941 circRNAs expression was not consistent with their parent genes, and we speculated that AR may regulate the expression of those circRNAs at the posttranscriptional level through affecting alternative splicing. Analyzing the androgen-responsive circRNAs regulated at the posttranscriptional level, we identified two key RNA binding proteins (RBPs), WTAP and TNRC6, using the circInteractome database, which may play important role in the biogenesis of androgen-responsive circRNAs. Furthermore, we explored the potential biological functions and predicted the molecular mechanisms of two dysregulated circRNAs (circNFIA and circZNF561) in prostate cancer. In this study, we revealed that circNFIA was upregulated in prostate cancer tissues and plasma samples from patients with prostate cancer; circNFIA may play an oncogenic role in prostate cancer. In contrast, circZNF561 was downregulated and may act as a tumor suppressor in prostate cancer. Our results suggest that androgen-responsive circRNAs might regulate the progression of prostate cancer and could be novel diagnostic biomarkers.


AC016745.3 Regulates the Transcription of AR Target Genes by Antagonizing NONO.

  • Yali Lu‎ et al.
  • Life (Basel, Switzerland)‎
  • 2021‎

The androgen receptor (AR) and its related signaling pathways play an important role in the development of prostate cancer (PCa). Long non-coding RNAs (lncRNAs) are involved in the regulation of tumorigenesis and development, but their specific mechanism of action remains unclear. This study examines the function and mechanisms of action of lncRNA AC016745.3 in the development of PCa. It shows that dihydrotestosterone (DHT) results in the AR-dependent suppression of AC016745.3 expression in the LNCaP androgen-sensitive human prostate adenocarcinoma cell line. In addition, overexpression of AC016745.3 inhibits the proliferation and migration of PCa cells, and suppresses the expression of AR target genes. This research also demonstrates that the protein NONO interacts with AR and functions as an AR co-activator, promoting AR transcriptional activity. Furthermore, using RNA immunoprecipitation (RIP)-PCR experiments, the study demonstrates that both NONO and AR can bind AC016745.3. Moreover, cell phenotypic experiments reveal that NONO can promote cellular proliferation and migration, and that AC016745.3 can partially antagonize the pro-oncogenic functions of NONO in PCa cells. In summary, the results indicate that AC016745.3 can bind NONO, suppressing its ability to promote AR-dependent transcriptional activity. Furthermore, DHT-dependent suppression of AC016745.3 expression can enhance NONO's promotion effect on AR.


Epigallocatechin gallate reverses gastric cancer by regulating the long noncoding RNA LINC00511/miR-29b/KDM2A axis.

  • Yueling Zhao‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2020‎

Epigallocatechin gallate (EGCG), as one of the main ingredients of green tea, has been reported to have potential prevention on a variety of solid tumors. However, the system-wide molecular mechanisms targeted to EGCG's anti-tumor effect have not been illustrated. Here, AGS and SGC7901 GC cells were used to investigate the EGCG-mediated change of gene expression. Our data showed that EGCG retarded cell growth and promoted cell death of GC in dose-dependent manner. Analyses based on transcription, translation as well as function were performed to explore the elusive anticancer role of EGCG. Of them, cell cycle was probably implicated key pathway of EGCG. Besides, our data revealed numerous LncRNAs activated after EGCG treatment. In this study, LINC00511 was discovered to be suppressed by EGCG and highly expressed in GC cells and tissues. Knockdown of LINC00511 inhibited cell growth and promoted cell death ratio in GC. Additionally, our data suggested LINC00511 could decrease the expression of miR-29b, followed by inducing GC development. Knockdown of miR-29b recovered the effects of LINC00511 silencing. In addition, we found overexpression of KDM2A, a target of miR-29b, would rescue the level of LINC00511. All the data showed that the LINC00511/miR-29b/KDM2A axis can be used as a diagnostic and therapeutic target for GC.


Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p.

  • Zhe Kong‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Circular RNA FOXO3 (CircFOXO3, also termed as Hsa_circ_0006404) is derived from exon 2 of forkhead box O3 (FOXO3) gene, and abnormal expression is shown in different diseases. However, whether circFOXO3 plays important roles in tumorigenesis and progression of prostate cancer (PCa) remains unclear. In this study, we found that circFOXO3 was up-regulated in both PCa tissues and serum samples. Moreover, circFOXO3 was positively correlated with the Gleason score in PCa samples. CircFOXO3 was observed to be up-regulated in Gleason score > 6 PCa samples compared with Gleason score = 6 PCa samples. Knock-down circFOXO3 could remarkably inhibit PCa cell cycle, proliferation and promote cell apoptosis in vitro. Furthermore, we demonstrated circFOXO3 could act as miR-29a-3p sponge to up-regulate SLC25A15 expression by bioinformatics analysis, dual-luciferase reporter assays and biotinylated RNA pull-down assays. SLC25A15 could reverse the tumour suppressing roles of knock-down circFOXO3 in PCa. Of note, we found that miR-29a-3p was down-regulated; however, SLC25A15 was overexpressed in PCa samples compared with normal tissues. In conclusion, circFOXO3 acts as a miR-29a-3p sponge to exhibit oncogenic activity that affects the cell cycle and cell apoptosis in PCa through transcriptional up-regulation of SLC25A15. Our analysis suggests circFOXO3 could act as promising prostate cancer biomarkers.


Androgen-induced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression.

  • Xuechao Wan‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2016‎

Prostate cancer (PCa) is the most commonly diagnosed and secondly leading cause of cancer death among males. But the precise mechanism of prostate cancer progression, including microRNAs (miRNAs) functioning in it, is still needs further study. We found miR-27a to be down-regulated in prostate cancer, and we investigated the mechanism and role of miRNA-27a in prostate cancer. MiR-27a, a transcriptional target of AR, was an androgen-induced miRNA in LNCaP cells. In castration-resistant prostate cancer (CRPC) cells, we for the first time reported that miR-27a was downregulated by PI3K signaling. MiR-27a functioned as a tumor suppressor in prostate cancer. Over-expression of miR-27a decreased prostate cancer cell proliferation and migration, and induced prostate cancer cell cycle arrest and apoptosis. MAP2K4, miR-27a's direct target gene, functioned as an oncogene in prostate cancer by reducing G1-S phase arrest and inhibiting cell apoptosis of prostate cancer cells. In conclusion, miR-27a functions as a tumor suppressor by suppressing MAP2K4 which acts as an oncogene in prostate cancer cell lines; we also provided a new mechanism of castration-resistant prostate cancer mediated by miR-27a that downregulation of miR-27a caused by aberrant AR signaling and PI3K/Akt signaling after androgen deprivation therapy (ADT) would promote the progression of castration-resistant prostate cancer.


Comprehensive Characterization of Androgen-Responsive lncRNAs Mediated Regulatory Network in Hormone-Related Cancers.

  • Dan Wang‎ et al.
  • Disease markers‎
  • 2020‎

The AR signaling pathway plays an important role in initiation and progression of many hormone-related cancers including prostate, bladder, kidney, lung, and breast cancer. However, the potential roles of androgen-responsive long noncoding RNAs (lncRNAs) in hormone-related cancers remained unclear. In the present study, we identified 469 novel androgen-responsive lncRNAs using microarray data. After validating the accuracy of the array data, we constructed a transcriptional network which contained more than 30 transcriptional factors using ChIP-seq data to explore upstream regulators of androgen-responsive lncRNAs. Next, we conducted bioinformatics analysis to identify lncRNA-miRNA-mRNA regulatory network. To explore the potential roles of androgen-responsive lncRNAs in hormone-related cancers, we performed coexpression network and PPI network analyses using TCGA data. GO and KEGG analyses showed these lncRNAs were mainly involved in regulating signal transduction, transcription, development, cell adhesion, immune response, cell differentiation, and MAPK signaling pathway. We also highlight the prognostic value of HPN-AS1, TPTEP1, and LINC00623 in cancer outcomes. Our results suggest that androgen-responsive lncRNAs played important roles in regulating hormone-related cancer progression and could be novel molecular biomarkers.


Co-expression analysis revealed PTCH1-3'UTR promoted cell migration and invasion by activating miR-101-3p/SLC39A6 axis in non-small cell lung cancer: implicating the novel function of PTCH1.

  • Xuechao Wan‎ et al.
  • Oncotarget‎
  • 2018‎

Metastasis is the most common cause of mortality for non-small cell lung cancer (NSCLC). PTCH1, a receptor of Hedgehog (Hh) pathway, is reported to suppress cell proliferation. Interestingly, our previous study showed PTCH1 silencing promoted cell proliferation but inhibited cell migration and invasion of NSCLC cells. However, the precise mechanisms of PTCH1 regulating NSCLC metastasis remain unclear. PTCH1 has multiple splicing variants, which all share the same 3'UTR sequence, meanwhile, emerging studies have shown competing endogenous RNAs (ceRNAs) play important roles in regulating cancer progression. Therefore, we hypothesized the functions of PTCH1-3'UTR in NSCLC in present study to reveal its role as a ceRNA. Here, we find overexpression of PTCH1-3'UTR promotes cell migration, invasion and adhesion, but does not affect cell proliferation in NSCLC cells. By combining weighted correlation network analysis (WGCNA) analysis and experimental validation, we reported PTCH1-3'UTR acted as a sponge to absorb miR-101-3p and promoted SLC39A6 expression. Moreover, we observed low expression of miR-101-3p and PTCH1 and high SLC39A6 levels were positively correlated with NSCLC progression. Therefore, our results help to understand the function of PTCH1 in NSCLC tumorigenesis and provide novel insights for the prevention of NSCLC metastasis.


UHRF1 overexpression is involved in cell proliferation and biochemical recurrence in prostate cancer after radical prostatectomy.

  • Xuechao Wan‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2016‎

Biochemical recurrence (BCR) is widely used to define the treatment success and to make decisions on if or how to initiate a secondary therapy, but uniform criteria to define BCR after radical prostatectomy (RP) is not yet completely assessed. UHRF1 has a unique function in regulating the epigenome by linking DNA methylation with histone marks. The clinical value of UHRF1 in PCa has not been well done. Therefore, we evaluated the prognostic significance of UHRF1.


A transcriptional target of androgen receptor, miR-421 regulates proliferation and metabolism of prostate cancer cells.

  • Delong Meng‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2016‎

Prostate cancer is one of the most common malignancies, and microRNAs have been recognized to be involved in tumorigenesis of various kinds of cancer including prostate cancer (PCa). Androgen receptor (AR) plays a core role in prostate cancer progression and is responsible for regulation of numerous downstream targets including microRNAs. This study identified an AR-repressed microRNA, miR-421, in prostate cancer. Expression of miR-421 was significantly suppressed by androgen treatment, and correlated to AR expression in different prostate cancer cell lines. Furthermore, androgen-activated AR could directly bind to androgen responsive element (ARE) of miR-421, as predicted by bioinformatics resources and demonstrated by ChIP and luciferase reporter assays. In addition, over-expression of miR-421 markedly supressed cell viability, delayed cell cycle, reduced glycolysis and inhibited migration in prostate cancer cells. According to the result of miR-421 target genes searching, we focused on 4 genes NRAS, PRAME, CUL4B and PFKFB2 based on their involvement in cell proliferation, cell cycle progression and metabolism. The expression of these 4 downstream targets were significantly repressed by miR-421, and the binding sites were verified by luciferase assay. Additionally, we explored the expression of miR-421 and its target genes in human prostate cancer tissues, both in shared microarray data and in our own cohort. Significant differential expression and inverse correlation were found in PCa patients.


Androgen-Responsive Oncogenic lncRNA RP11-1023L17.1 Enhances c-Myc Protein Stability in Prostate Cancer.

  • Wenhua Huang‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Long noncoding RNAs (lncRNAs) have been found as novel participants in the pathophysiology of prostate cancer (PCa), which is predominantly regulated by androgen and its receptor. The biological function of androgen-responsive lncRNAs remains poorly understood. Here, we identified that lncRNA RP11-1023L17.1, which is highly expressed in PCa. RP11-1023L17.1 expression, can be directly repressed by the androgen receptor in PCa cells. RP11-1023L17.1 depletion inhibited the proliferation, migration, and cell cycle progression, and promoted the apoptosis of PCa cells, indicating that RP11-1023L17.1 acts as an oncogene in PCa cells. Microarray results revealed that RP11-1023L17.1 depletion downregulated the c-Myc transcription signature in PCa cells. RP11-1023L17.1 depletion-induced cellular phenotypes can be overcome by ectopically overexpressed c-Myc. Mechanistically, RP11-1023L17.1 represses FBXO32 mRNA expression, thereby enhancing c-Myc protein stability by blocking FBXO32-mediated c-Myc degradation. Our findings reveal the previously unrecognized roles of RP11-1023L17.1 in c-Myc-dependent PCa tumorigenesis.


Crosstalk Between AR and Wnt Signaling Promotes Castration-Resistant Prostate Cancer Growth.

  • Jun Luo‎ et al.
  • OncoTargets and therapy‎
  • 2020‎

Prostate cancer (PCa) is the most commonly diagnosed cancer and the third leading cause of cancer-related death in males in the United States. Despite the initial efficacy of androgen deprivation therapy in prostate cancer (PCa) patients, most patients progress to castration-resistant prostate cancer. However, the mechanisms underlying the androgen-independent progression of PCa remain largely unknown.


MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma.

  • Tianzhi Huang‎ et al.
  • Cancer cell‎
  • 2017‎

ATG4B stimulates autophagy by promoting autophagosome formation through reversible modification of ATG8. We identify ATG4B as a substrate of mammalian sterile20-like kinase (STK) 26/MST4. MST4 phosphorylates ATG4B at serine residue 383, which stimulates ATG4B activity and increases autophagic flux. Inhibition of MST4 or ATG4B activities using genetic approaches or an inhibitor of ATG4B suppresses autophagy and the tumorigenicity of glioblastoma (GBM) cells. Furthermore, radiation induces MST4 expression, ATG4B phosphorylation, and autophagy. Inhibiting ATG4B in combination with radiotherapy in treating mice with intracranial GBM xenograft markedly slows tumor growth and provides a significant survival benefit. Our work describes an MST4-ATG4B signaling axis that influences GBM autophagy and malignancy, and whose therapeutic targeting enhances the anti-tumor effects of radiotherapy.


Up-regulated miR-29c inhibits cell proliferation and glycolysis by inhibiting SLC2A3 expression in prostate cancer.

  • Junliang Li‎ et al.
  • Gene‎
  • 2018‎

Prostate cancer (PCa) is the most commonly cancer in male worldwide. However, the molecular mechanisms underlying the progression of PCa remain unclear. MiR-29c was reported to be down-regulated in several kinds of tumors. Here, we for the first time demonstrated miR-29c was down-regulated in PCa samples. SLC2A3, a regulator of glycolysis, was validated as a direct target of miR-29c. Moreover, functional studies showed miR-29c could inhibit cell growth, induce apoptosis and deceased the rate of glucose metabolism. Accordingly, we identified miR-29c acted as a tumor-suppressor and was down-regulated in PCa. We thought this study will provide useful information to explore the potential candidate biomarkers for diagnosis and prognosis targets of PCa.


An androgen reduced transcript of LncRNA GAS5 promoted prostate cancer proliferation.

  • Yingyi Zhang‎ et al.
  • PloS one‎
  • 2017‎

Prostate cancer (PCa) becomes a leading cause of death in males nowadays. Recent reports showed that androgen-responsive long non-coding RNAs played important roles in tumorigenesis and progression of PCa. In this study, we focused on a special transcript of GAS5 (ENST00000456293.5, GAS5-007), which was reported as a tumor suppressor. Here, we demonstrated GAS5-007 was reduced by androgen treatment and inhibited by AR. Next, we explored the expression level of GAS, finding the expression of it in PCa tissue was higher than normal tissue in both public databases and human tissue samples. Functional analysis of GAS5 showed it was related to regulating translational elongation, protein biosynthesis, and transcription. Moreover, we observed GAS5-007 knockdown inhibited the proliferation, cell cycle and promoted cell apoptosis of PCa. We also constructed a GAS5-miRNA network to explain the different roles of different GAS5 transcripts in PCa. This study provides novel insights to identify potential diagnostic biomarker and therapy target for prostate cancer in clinical treatment.


Androgen-induced miR-135a acts as a tumor suppressor through downregulating RBAK and MMP11, and mediates resistance to androgen deprivation therapy.

  • Xuechao Wan‎ et al.
  • Oncotarget‎
  • 2016‎

The main challenge in the treatment of prostate cancer (PCa) is that the majority of patients inevitably develop resistance to androgen deprivation. However, the mechanisms involved in hormone independent behavior of PCa remain unclear. In the present study, we identified androgen-induced miR-135a as a direct target of AR. Functional studies revealed that overexpression of miR-135a could significantly decrease cell proliferation and migration, and induce cell cycle arrest and apoptosis in PCa. We identified RBAK and MMP11 as direct targets of miR-135a in PCa by integrating bioinformatics analysis and experimental assays. Mechanistically, miR-135a repressed PCa migration through downregulating MMP11 and induced PCa cell cycle arrest and apoptosis by suppressing RBAK. Consistently, inverse correlations were also observed between the expression of miR-135a and RBAK or MMP11 in PCa samples. In addition, low miR-135a and high RBAK and MMP11 expression were positively correlated with PCa progression. Also, PI3K/AKT pathway was confirmed to be an upstream regulation signaling of miR-135a in androgen-independent cell lines. Accordingly, we reported a resistance mechanism to androgen deprivation therapy (ADT) mediated by miR-135a which might be downregulated by androgen depletion and/or PI3K/AKT hyperactivation, in castration-resistant prostate cancer (CRPC), thus promoting tumor progression. Taken together, miR-135a may represent a new diagnostic and therapeutic biomarker for castration-resistant PCa.


PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells.

  • Tianzhi Huang‎ et al.
  • Molecular cell‎
  • 2021‎

Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.


Identification of androgen-responsive lncRNAs as diagnostic and prognostic markers for prostate cancer.

  • Xuechao Wan‎ et al.
  • Oncotarget‎
  • 2016‎

Prostate cancer (PCa) is a leading cause of mortality among males. Long non-coding RNAs (lncRNAs) are subclass of noncoding RNAs that may act as biomarkers and therapeutic targets. In this study, we firstly conducted analysis of global lncRNA expression patterns by using our own cohort (GSE73397) and two public available gene expression datasets: The Cancer Genome Atlas (TCGA) and GSE55909. Next, we performed microarray to observe genome-wide lncRNAs' expressions under dihydrotestosterone (DHT) stimulation in LNCaP cells (GSE72866), and overlapped the result with ChIPBase data to predict androgen-responsive lncRNAs with ARE. Combined the two results, a total of 44 androgen-responsive lncRNAs with ARE were found to be over-expressed in PCa samples. Ten lncRNAs were selected for further validation by examining their expressions in LNCaP cells under DHT stimulation, and in PCa samples and cell lines. Among them, RP1-4514.2, LINC01138, SUZ12P1 and KLKP1 were validated as directly AR-targeted lncRNAs by ChIP-PCR. Then we conducted a bioinformatic analysis to identify lncRNAs as putative prognostic and therapeutic targets by using TCGA data. Three androgen-responsive lncRNAs, LINC01138, SUZ12P1 and SNHG1 showed association with gleason score and pT-stage. The biological functions of LINC01138 and SUZ12P1 were also evaluated, both lncRNAs promoted the proliferation and inhibited apoptosis of PCa. These results provide potent information for exploring potential biomarkers and therapeutic targets for prostate cancer, especially for castration-resistant PCa.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: