Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 95 papers

Enhanced itch elicited by capsaicin in a chronic itch model.

  • Guang Yu‎ et al.
  • Molecular pain‎
  • 2016‎

Chronic itch (pruritus) is an important clinical problem. However, the underlying molecular basis has yet to be understood. The Transient Receptor Potential Vanilloid 1 channel is a heat-sensitive cation channel expressed in primary sensory neurons and involved in both thermosensation and pain, but its role in chronic itch remains elusive. Here, we for the first time revealed an increased innervation density of Transient Receptor Potential Vanilloid 1-expressing sensory fibers in the skin afflicted with chronic itch. Further analysis indicated that this phenomenon is due to an expansion of Transient Receptor Potential Vanilloid 1-expressing sensory neurons under chronic itch conditions. As a functional correlates of this neuronal expansion, we observed an enhanced neuronal responsiveness to capsaicin under the dry skin conditions. Importantly, the neuronal hypersensitivity to capsaicin results in itch, rather than pain sensation, suggesting that the up-regulated Transient Receptor Potential Vanilloid 1 underlies the pain-to-itch switch under chronic itchy conditions. The study shows that there are different mechanisms of chronic pain and itching, and Transient Receptor Potential Vanilloid 1 plays an important role in chronic itch.


Oligonucleotide Probes for ND-FISH Analysis to Identify Rye and Wheat Chromosomes.

  • Shulan Fu‎ et al.
  • Scientific reports‎
  • 2015‎

Genomic in situ hybridization (GISH) has been widely used to detect rye (Secale cereale L.) chromosomes in wheat (Triticum aestivum L.) introgression lines. The routine procedure of GISH using genomic DNA of rye as a probe is time-consuming and labor-intensive because of the preparation and labeling of genomic DNA of rye and denaturing of chromosomes and probes. In this study, new oligonucleotide probes Oligo-1162, Oligo-pSc200 and Oligo-pSc250 were developed. The three new probes can be used for non-denaturing fluorescence in situ hybridization (ND-FISH) assays and replace genomic DNA of rye as a probe to discriminate rye chromosomes in wheat backgrounds. In addition, previously developed oligonucleotide probes Oligo-pSc119.2-1, Oligo-pSc119.2-2, Oligo-pTa535-1, Oligo-pTa535-2, Oligo-pTa71-2, Oligo-pAWRC.1 and Oligo-CCS1 can also be used for ND-FISH of wheat and rye. These probes have provided an easier, faster and more cost-effective method for the FISH analysis of wheat and hybrids derived from wheat × rye.


Developing New Oligo Probes to Distinguish Specific Chromosomal Segments and the A, B, D Genomes of Wheat (Triticum aestivum L.) Using ND-FISH.

  • Shuyao Tang‎ et al.
  • Frontiers in plant science‎
  • 2018‎

Non-denaturing FISH (ND-FISH) technology has been widely used to study the chromosomes of Triticeae species because of its convenience. The oligo probes for ND-FISH analysis of wheat (Triticum aestivum L.) chromosomes are still limited. In this study, the whole genome shotgun assembly sequences (IWGSC WGA v0.4) and the first version of the reference sequences (IWGSC RefSeq v1.0) of Chinese Spring (T. aestivum L.) were used to find new tandem repeats. One hundred and twenty oligo probes were designed according to the new tandem repeats and used for ND-FISH analysis of chromosomes of wheat Chinese Spring. Twenty nine of the 120 oligo probes produce clear or strong signals on wheat chromosomes. Two of the 29 oligo probes can be used to conveniently distinguish wheat A-, B-, and D-genome chromosomes. Sixteen of the 29 oligo probes only produce clear or strong signals on the subtelomeric regions of 1AS, 5AS, 7AL, 4BS, 5BS, and 3DS arms, on the telomeric regions of 1AL, 5AL, 2BS, 3BL, 6DS, and 7DL arms, on the intercalary regions of 4AL and 2DL arms, and on the pericentromeric regions of 3DL and 6DS arms. Eleven of the 29 oligo probes generate distinct signal bands on several chromosomes and they are different from those previously reported. In addition, the short and long arms of 6D chromosome have been confirmed. The new oligo probes developed in this study are useful and convenient for distinguishing wheat chromosomes or specific segments of wheat chromosomes.


Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor.

  • Yong Jun Kim‎ et al.
  • Cell stem cell‎
  • 2014‎

Neural crest (NC) generates diverse lineages including peripheral neurons, glia, melanocytes, and mesenchymal derivatives. Isolating multipotent human NC has proven challenging, limiting our ability to understand NC development and model NC-associated disorders. Here, we report direct reprogramming of human fibroblasts into induced neural crest (iNC) cells by overexpression of a single transcription factor, SOX10, in combination with environmental cues including WNT activation. iNC cells possess extensive capacity for migration in vivo, and single iNC clones can differentiate into the four main NC lineages. We further identified a cell surface marker for prospective isolation of iNCs, which was used to generate and purify iNCs from familial dysautonomia (FD) patient fibroblasts. FD-iNC cells displayed defects in cellular migration and alternative mRNA splicing, providing insights into FD pathogenesis. Thus, this study provides an accessible platform for studying NC biology and disease through rapid and efficient reprogramming of human postnatal fibroblasts.


Molecular Cytogenetic Characterization of New Wheat-Rye 1R(1B) Substitution and Translocation Lines from a Chinese Secale cereal L. Aigan with Resistance to Stripe Rust.

  • Zhi Li‎ et al.
  • PloS one‎
  • 2016‎

Secale cereale L. has been used worldwide as a source of genes for agronomic and resistance improvement. In this study, a stable wheat-rye substitution line and 3 primary 1RS.1BL translocation lines were selected from the progeny of the crossing of the Chinese local rye Aigan variety and wheat cultivar Mianyang11. The substitution and translocation lines were identified by molecular cytogenetic analysis. PCR results, fluorescence in situ hybridization and acid polyacrylamide gel electrophoresis indicated that there were a pair of 1R chromosomes in the substitution line which have been named RS1200-3, and a pair of 1RS.1BL translocation chromosomes in the other 3 translocation lines, which have been named RT1163-4, RT1217-1, and RT1249. When inoculated with stripe rust isolates, these 4 lines expressed high resistance to several Puccinia striiformis f. sp Tritici pathotypes that are virulent on Yr9. Moreover, the different response pattern of resistance among them suggested that the diversity of resistance genes for wheat stripe rust exists in the rye. These 4 lines also showed better agronomic performances than their wheat parent. The GS indices also showed the genetic diversity of the 1RS which derived from same rye variety. The present study indicates that rye cultivars may carry untapped variations that could potentially be used for wheat improvement.


Pirt functions as an endogenous regulator of TRPM8.

  • Zongxiang Tang‎ et al.
  • Nature communications‎
  • 2013‎

Pirt is a membrane protein that is specifically expressed in the peripheral nervous system, where it has been shown to increase the sensitivity of the transient receptor potential vanilloid 1 channel and modulate its role in heat pain. The broad expression of Pirt among dorsal root ganglion neurons suggests it may modulate other transient receptor potentials, such as the menthol and cooling sensor TRPM8. The discrepancies in the channel properties of TRPM8 in native neurons versus heterologous cells indicate the existence of endogenous modulators of the channel. Here we show that Pirt regulates the function of TRPM8 and its role in detecting cold. Pirt(-/-) mice exhibit decreased behavioural responses to cold and cool temperatures, and Pirt increases the sensitivity of TRPM8 to menthol and cool temperature. Our data suggest Pirt is an endogenous regulator of TRPM8.


Tolerance develops to the antiallodynic effects of the peripherally acting opioid loperamide hydrochloride in nerve-injured rats.

  • Shao-Qiu He‎ et al.
  • Pain‎
  • 2013‎

Peripherally acting opioids are potentially attractive drugs for the clinical management of certain chronic pain states due to the lack of centrally mediated adverse effects. However, it remains unclear whether tolerance develops to peripheral opioid analgesic effects under neuropathic pain conditions. We subjected rats to L5 spinal nerve ligation (SNL) and examined the analgesic effects of repetitive systemic and local administration of loperamide hydrochloride, a peripherally acting opioid agonist. We found that the inhibition of mechanical hypersensitivity, an important manifestation of neuropathic pain, by systemic loperamide (1.5mg/kg subcutaneously) decreased after repetitive drug treatment (tolerance-inducing dose: 0.75 to 6.0mg/kg subcutaneously). Similarly, repeated intraplantar injection of loperamide (150 μg/50 μL intraplantarly) and D-Ala(2)-MePhe(4)-Glyol(5) enkephalin (300 μg/50 μL), a highly selective mu-opioid receptor (MOR) agonist, also resulted in decreased inhibition of mechanical hypersensitivity. Pretreatment with naltrexone hydrochloride (5mg/kg intraperitoneally) and MK-801 (0.2mg/kg intraperitoneally) attenuated systemic loperamide tolerance. Western blot analysis showed that repetitive systemic administration of morphine (3mg/kg subcutaneously), but not loperamide (3mg/kg subcutaneously) or saline, significantly increased MOR phosphorylation in the spinal cord of SNL rats. In cultured rat dorsal root ganglion neurons, loperamide dose-dependently inhibited KCl-induced increases in [Ca(2+)]i. However, this drug effect significantly decreased in cells pretreated with loperamide (3 μM, 72 hours). Intriguingly, in loperamide-tolerant cells, the delta-opioid receptor antagonist naltrindole restored loperamide's inhibition of KCl-elicited [Ca(2+)]i increase. Our findings indicate that animals with neuropathic pain may develop acute tolerance to the antiallodynic effects of peripherally acting opioids after repetitive systemic and local drug administration.


Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

  • Shulan Fu‎ et al.
  • PloS one‎
  • 2013‎

Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations.


Preso1 dynamically regulates group I metabotropic glutamate receptors.

  • Jia-Hua Hu‎ et al.
  • Nature neuroscience‎
  • 2012‎

Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are G protein–coupled receptors (GPCRs) that are expressed at excitatory synapses in brain and spinal cord. GPCRs are often negatively regulated by specific G protein–coupled receptor kinases and subsequent binding of arrestin-like molecules. Here we demonstrate an alternative mechanism in which group I mGluRs are negatively regulated by proline-directed kinases that phosphorylate the binding site for the adaptor protein Homer, and thereby enhance mGluR–Homer binding to reduce signaling. This mechanism is dependent on a multidomain scaffolding protein, Preso1, that binds mGluR, Homer and proline-directed kinases and that is required for their phosphorylation of mGluR at the Homer binding site. Genetic ablation of Preso1 prevents dynamic phosphorylation of mGluR5, and Preso1(−/−) mice exhibit sustained, mGluR5-dependent inflammatory pain that is linked to enhanced mGluR signaling. Preso1 creates a microdomain for proline-directed kinases with broad substrate specificity to phosphorylate mGluR and to mediate negative regulation.


Mrgprs on vagal sensory neurons contribute to bronchoconstriction and airway hyper-responsiveness.

  • Liang Han‎ et al.
  • Nature neuroscience‎
  • 2018‎

Asthma, accompanied by lung inflammation, bronchoconstriction and airway hyper-responsiveness, is a significant public health burden. Here we report that Mas-related G protein-coupled receptors (Mrgprs) are expressed in a subset of vagal sensory neurons innervating the airway and mediates cholinergic bronchoconstriction and airway hyper-responsiveness. These findings provide insights into the neural mechanisms underlying the pathogenesis of asthma.


An Intrinsic Epigenetic Barrier for Functional Axon Regeneration.

  • Yi-Lan Weng‎ et al.
  • Neuron‎
  • 2017‎

Mature neurons in the adult peripheral nervous system can effectively switch from a dormant state with little axonal growth to robust axon regeneration upon injury. The mechanisms by which injury unlocks mature neurons' intrinsic axonal growth competence are not well understood. Here, we show that peripheral sciatic nerve lesion in adult mice leads to elevated levels of Tet3 and 5-hydroxylmethylcytosine in dorsal root ganglion (DRG) neurons. Functionally, Tet3 is required for robust axon regeneration of DRG neurons and behavioral recovery. Mechanistically, peripheral nerve injury induces DNA demethylation and upregulation of multiple regeneration-associated genes in a Tet3- and thymine DNA glycosylase-dependent fashion in DRG neurons. In addition, Pten deletion-induced axon regeneration of retinal ganglion neurons in the adult CNS is attenuated upon Tet1 knockdown. Together, our study suggests an epigenetic barrier that can be removed by active DNA demethylation to permit axon regeneration in the adult mammalian nervous system.


A hypomorphic PIGA gene mutation causes severe defects in neuron development and susceptibility to complement-mediated toxicity in a human iPSC model.

  • Xuan Yuan‎ et al.
  • PloS one‎
  • 2017‎

Mutations in genes involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis underlie a group of congenital syndromes characterized by severe neurodevelopmental defects. GPI anchored proteins have diverse roles in cell adhesion, signaling, metabolism and complement regulation. Over 30 enzymes are required for GPI anchor biosynthesis and PIGA is involved in the first step of this process. A hypomorphic mutation in the X-linked PIGA gene (c.1234C>T) causes multiple congenital anomalies hypotonia seizure syndrome 2 (MCAHS2), indicating that even partial reduction of GPI anchored proteins dramatically impairs central nervous system development, but the mechanism is unclear. Here, we established a human induced pluripotent stem cell (hiPSC) model containing the PIGAc.1234C>T mutation to study the effects of a hypomorphic allele of PIGA on neuronal development. Neuronal differentiation from neural progenitor cells generated by EB formation in PIGAc.1234C>T is significantly impaired with decreased proliferation, aberrant synapse formation and abnormal membrane depolarization. The results provide direct evidence for a critical role of GPI anchor proteins in early neurodevelopment. Furthermore, neural progenitors derived from PIGAc.1234C>T hiPSCs demonstrate increased susceptibility to complement-mediated cytotoxicity, suggesting that defective complement regulation may contribute to neurodevelopmental disorders.


Role of P2X3 receptors in scratching behavior in mouse models.

  • Miho Shiratori-Hayashi‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2019‎

No abstract available


Synchronized cluster firing, a distinct form of sensory neuron activation, drives spontaneous pain.

  • Qin Zheng‎ et al.
  • Neuron‎
  • 2022‎

Spontaneous pain refers to pain occurring without external stimuli. It is a primary complaint in chronic pain conditions and remains difficult to treat. Moreover, the mechanisms underlying spontaneous pain remain poorly understood. Here we employed in vivo imaging of dorsal root ganglion (DRG) neurons and discovered a distinct form of abnormal spontaneous activity following peripheral nerve injury: clusters of adjacent DRG neurons firing synchronously and sporadically. The level of cluster firing correlated directly with nerve injury-induced spontaneous pain behaviors. Furthermore, we demonstrated that cluster firing is triggered by activity of sympathetic nerves, which sprout into DRGs after injury, and identified norepinephrine as a key neurotransmitter mediating this unique firing. Chemogenetic and pharmacological manipulations of sympathetic activity and norepinephrine receptors suggest that they are necessary and sufficient for DRG cluster firing and spontaneous pain behavior. Therefore, blocking sympathetically mediated cluster firing may be a new paradigm for treating spontaneous pain.


Biological screening of a unique drug library targeting MRGPRX2.

  • Fan Yang‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Allergic drug reaction or drug allergy is an immunologically mediated drug hypersensitivity reaction (DHR). G-protein coupled receptors (GPCRs) are common drug targets and communicate extracellular signals that initiate cellular responses. Recent evidence shows that GPCR MRGPRX2 is of major importance in IgE-independent pseudo-allergic DHRs based on the suspected interactions between many FDA-approved peptidergic compounds and MRGPRX2.


Mast cell stabilization: new mechanism underlying the therapeutic effect of intense pulsed light on rosacea.

  • Peiyu Jiang‎ et al.
  • Inflammation research : official journal of the European Histamine Research Society ... [et al.]‎
  • 2023‎

Rosacea, a chronic inflammatory disorder of the facial skin, is effectively treated by intense pulsed light (IPL).


Cimifugin relieves pruritus in psoriasis by inhibiting TRPV4.

  • Jinjin Yan‎ et al.
  • Cell calcium‎
  • 2021‎

Psoriasis is an immune-mediated chronic inflammatory skin disease characterized by erythema, scales, and infiltration of the skin, which causes deleterious effects on patient quality of life. TRP channel played important roles in the generation and conductance of itch signal . According to our results, psoriasis induced itch was TRPV4 dependent, and TRPV4 expression in both epidermis and DRG were up-regulated in psoriasis. Thus, TRPV4 is an attractive candidate for treating psoriasis induced itch. Cimifugin is a common compound in antipruritic Chinese medicine. In our study, GSK1016790A, a TRPV4 channel specific agonist, induced acute itch was inhibited by cimifugin in a dose-dependent manner. Furthermore, cimifugin treatment reduced the scratching behavior and reversed the TRPV4 up-regulation induced by psoriasis. In particular, cimifugin decreased GSK1016790A induced calcium response both in HaCaT cells and DRG neurons. Importantly, in TRPV4 transfected HEK293 cells, GSK101 induced calcium response was also significantly inhibited by cimifugin pretreatment. Consistent with our calcium imaging result, cimifugin pretreatment also inhibited GSK101 induced inward currents. Our study delineated a new role of TRPV4 in psoriasis and emphasized the antipruritic effect of cimifugin, which opened a new avenue to itch management in psoriasis.


Development and application of a high-content virion display human GPCR array.

  • Guan-Da Syu‎ et al.
  • Nature communications‎
  • 2019‎

Human G protein-coupled receptors (GPCRs) respond to various ligands and stimuli. However, GPCRs rely on membrane for proper folding, making their biochemical properties difficult to study. By displaying GPCRs in viral envelopes, we fabricated a Virion Display (VirD) array containing 315 non-olfactory human GPCRs for functional characterization. Using this array, we found that 10 of 20 anti-GPCR mAbs were ultra-specific. We further demonstrated that those failed in the mAb assays could recognize their canonical ligands, suggesting proper folding. Next, using two peptide ligands on the VirD-GPCR array, we identified expected interactions and novel interactions. Finally, we screened the array with group B Streptococcus, a major cause of neonatal meningitis, and demonstrated that inhibition of a newly identified target, CysLTR1, reduced bacterial penetration both in vitro and in vivo. We believe that the VirD-GPCR array holds great potential for high-throughput screening for small molecule drugs, affinity reagents, and ligand deorphanization.


Activation of pruritogenic TGR5, MrgprA3, and MrgprC11 on colon-innervating afferents induces visceral hypersensitivity.

  • Joel Castro‎ et al.
  • JCI insight‎
  • 2019‎

Itch induces scratching that removes irritants from the skin, whereas pain initiates withdrawal or avoidance of tissue damage. While pain arises from both the skin and viscera, we investigated whether pruritogenic irritant mechanisms also function within visceral pathways. We show that subsets of colon-innervating sensory neurons in mice express, either individually or in combination, the pruritogenic receptors Tgr5 and the Mas-gene-related GPCRs Mrgpra3 and Mrgprc11. Agonists of these receptors activated subsets of colonic sensory neurons and evoked colonic afferent mechanical hypersensitivity via a TRPA1-dependent mechanism. In vivo intracolonic administration of individual TGR5, MrgprA3, or MrgprC11 agonists induced pronounced visceral hypersensitivity to colorectal distension. Coadministration of these agonists as an "itch cocktail" augmented hypersensitivity to colorectal distension and changed mouse behavior. These irritant mechanisms were maintained and enhanced in a model of chronic visceral hypersensitivity relevant to irritable bowel syndrome. Neurons from human dorsal root ganglia also expressed TGR5, as well as the human ortholog MrgprX1, and showed increased responsiveness to pruritogenic agonists in pathological states. These data support the existence of an irritant-sensing system in the colon that is a visceral representation of the itch pathways found in skin, thereby contributing to sensory disturbances accompanying common intestinal disorders.


Development of a Mouse Pain Scale Using Sub-second Behavioral Mapping and Statistical Modeling.

  • Ishmail Abdus-Saboor‎ et al.
  • Cell reports‎
  • 2019‎

Rodents are the main model systems for pain research, but determining their pain state is challenging. To develop an objective method to assess pain sensation in mice, we adopt high-speed videography to capture sub-second behavioral features following hind paw stimulation with both noxious and innocuous stimuli and identify several differentiating parameters indicating the affective and reflexive aspects of nociception. Using statistical modeling and machine learning, we integrate these parameters into a single index and create a "mouse pain scale," which allows us to assess pain sensation in a graded manner for each withdrawal. We demonstrate the utility of this method by determining sensations triggered by three different von Frey hairs and optogenetic activation of two different nociceptor populations. Our behavior-based "pain scale" approach will help improve the rigor and reproducibility of using withdrawal reflex assays to assess pain sensation in mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: