Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries.

  • Yayuan Liu‎ et al.
  • Science advances‎
  • 2017‎

Solid-state lithium (Li) metal batteries are prominent among next-generation energy storage technologies due to their significantly high energy density and reduced safety risks. Previously, solid electrolytes have been intensively studied and several materials with high ionic conductivity have been identified. However, there are still at least three obstacles before making the Li metal foil-based solid-state systems viable, namely, high interfacial resistance at the Li/electrolyte interface, low areal capacity, and poor power output. The problems are addressed by incorporating a flowable interfacial layer and three-dimensional Li into the system. The flowable interfacial layer can accommodate the interfacial fluctuation and guarantee excellent adhesion at all time, whereas the three-dimensional Li significantly reduces the interfacial fluctuation from the whole electrode level (tens of micrometers) to local scale (submicrometer) and also decreases the effective current density for high-capacity and high-power operations. As a consequence, both symmetric and full-cell configurations can achieve greatly improved electrochemical performances in comparison to the conventional Li foil, which are among the best reported values in the literature. Noticeably, solid-state full cells paired with high-mass loading LiFePO4 exhibited, at 80°C, a satisfactory specific capacity even at a rate of 5 C (110 mA·hour g-1) and a capacity retention of 93.6% after 300 cycles at a current density of 3 mA cm-2 using a composite solid electrolyte middle layer. In addition, when a ceramic electrolyte middle layer was adopted, stable cycling with greatly improved capacity could even be realized at room temperature.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: