2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 351 papers

Improvement of sciatic nerve regeneration using laminin-binding human NGF-beta.

  • Wenjie Sun‎ et al.
  • PloS one‎
  • 2009‎

Sciatic nerve injuries often cause partial or total loss of motor, sensory and autonomic functions due to the axon discontinuity, degeneration, and eventual death which finally result in substantial functional loss and decreased quality of life. Nerve growth factor (NGF) plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical applications. We reported here by fusing with the N-terminal domain of agrin (NtA), NGF-beta could target to nerve cells and improve nerve regeneration.


Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters.

  • Bing Chen‎ et al.
  • PloS one‎
  • 2011‎

In disparate organisms adaptation to thermal stress has been linked to changes in the expression of genes encoding heat-shock proteins (Hsp). The underlying genetics, however, remain elusive. We show here that two AT-rich sequence elements in the promoter region of the hsp70 gene of the fly Liriomyza sativae that are absent in the congeneric species, Liriomyza huidobrensis, have marked cis-regulatory consequences. We studied the cis-regulatory consequences of these elements (called ATRS1 and ATRS2) by measuring the constitutive and heat-shock-induced luciferase luminescence that they drive in cells transfected with constructs carrying them modified, deleted, or intact, in the hsp70 promoter fused to the luciferase gene. The elements affected expression level markedly and in different ways: Deleting ATRS1 augmented both the constitutive and the heat-shock-induced luminescence, suggesting that this element represses transcription. Interestingly, replacing the element with random sequences of the same length and A+T content delivered the wild-type luminescence pattern, proving that the element's high A+T content is crucial for its effects. Deleting ATRS2 decreased luminescence dramatically and almost abolished heat-shock inducibility and so did replacing the element with random sequences matching the element's length and A+T content, suggesting that ATRS2's effects on transcription and heat-shock inducibility involve a common mechanism requiring at least in part the element's specific primary structure. Finally, constitutive and heat-shock luminescence were reduced strongly when two putative binding sites for the Zeste transcription factor identified within ATRS2 were altered through site-directed mutagenesis, and the heat-shock-induced luminescence increased when Zeste was over-expressed, indicating that Zeste participates in the effects mapped to ATRS2 at least in part. AT-rich sequences are common in promoters and our results suggest that they should play important roles in regulatory evolution since they can affect expression markedly and constrain promoter DNA in at least two different ways.


Honey reduces blood alcohol concentration but not affects the level of serum MDA and GSH-Px activity in intoxicated male mice models.

  • Peiying Shi‎ et al.
  • BMC complementary and alternative medicine‎
  • 2015‎

For a long time, honey was purportedly helpful to prevent drunkenness and relieve hangover symptoms. However, few of the assertions have experienced scientific assessment. The present study examined the effects of honey on intoxicated male mice.


Direct conversion of fibroblasts into neural progenitor-like cells by forced growth into 3D spheres on low attachment surfaces.

  • Guannan Su‎ et al.
  • Biomaterials‎
  • 2013‎

Many stem cells grow into three-dimensional (3D) spheres or colonies, such as neural progenitor cells (NPCs) and embryonic stem cells (ESCs). Sphere morphology helps maintaining the stemness of stem cells. Our previous study demonstrated that forced growth of RT4 and HEK293 cells into 3D sphere on low attachment surface could induce stem cell properties. The close relationship between 3D sphere morphology and stem cell stemness drives us to hypothesize that 3D sphere formation induces fibroblasts reprogramming. The key gene Sox2 for reprogramming fibroblasts into NPCs was found to be overexpressed in 3D sphere cultured mouse fibroblasts. These cells exhibited similar morphological and molecular features to NPCs in vitro, were capable of differentiating into neurons, astrocytes and oligodendrocytes, and could generate long-term expandable neurospheres while maintaining differentiation capability. When engrafted into hippocampus of adult rat brain, the 3D sphere cells differentiated into neural cells. Thus, NPCs can be generated from fibroblasts directly through a physical approach without introducing exogenous reprogramming factors.


Palmitate induces apoptosis in mouse aortic endothelial cells and endothelial dysfunction in mice fed high-calorie and high-cholesterol diets.

  • Yunxia Lu‎ et al.
  • Life sciences‎
  • 2013‎

Obesity is associated with hypertriglyceridemia and elevated circulating free fatty acids (FFA), resulting in endothelial dysfunction. Endoplasmic reticulum (ER) stress has been implicated in many of these processes. To determine if ER stress participates in palmitate-induced apoptosis, we investigated the effects of diet-induced obesity and palmitate on mouse aortic endothelial cells (MAEC) in vivo and in vitro.


The importance of three-dimensional scaffold structure on stemness maintenance of mouse embryonic stem cells.

  • Jianshu Wei‎ et al.
  • Biomaterials‎
  • 2014‎

Revealing the mechanisms of cell fate regulation is important for scientific research and stem cell-based therapy. The traditional two-dimensional (2D) cultured mES cells are in a very different 2D niche from the in vivo equivalent-inner cell mass (ICM). Because the cell fate decision could be regulated by many cues which could be impacted by geometry, the traditional 2D culture system would hamper us from understanding the in vivo situations correctly. Three-dimensional (3D) scaffold was believed to provide a 3D environment closed to the in vivo one. In this work, three different scaffolds were prepared for cell culture. Several characters of mES cells were changed under 3D scaffolds culture compared to 2D, and these changes were mainly due to the alteration in geometry but not the matrix. The self-renewal of mES cells was promoted by the introducing of dimensionality. The stemness maintenance of mES was supported by all three 3D scaffolds without feeder cells in the long-time culture. Our findings demonstrated that the stemness maintenance of mES cells was promoted by the 3D geometry of scaffolds and this would provide a promising platform for ES cell research.


MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells.

  • Bing Chen‎ et al.
  • BMC cancer‎
  • 2014‎

Reprogramming energy metabolism has been an emerging hallmark of cancer cells. MicroRNAs play important roles in glucose metabolism.


Design of lipid nanocapsule delivery vehicles for multivalent display of recombinant Env trimers in HIV vaccination.

  • Sharmila Pejawar-Gaddy‎ et al.
  • Bioconjugate chemistry‎
  • 2014‎

Immunization strategies that elicit antibodies capable of neutralizing diverse virus strains will likely be an important part of a successful vaccine against HIV. However, strategies to promote robust humoral responses against the native intact HIV envelope trimer structure are lacking. We recently developed chemically cross-linked lipid nanocapsules as carriers of molecular adjuvants and encapsulated or surface-displayed antigens, which promoted follicular helper T-cell responses and elicited high-avidity, durable antibody responses to a candidate malaria antigen. To apply this system to the delivery of HIV antigens, Env gp140 trimers with terminal his-tags (gp140T-his) were anchored to the surface of lipid nanocapsules via Ni-NTA-functionalized lipids. Initial experiments revealed that the large (409 kDa), heavily glycosylated trimers were capable of extracting fluid phase lipids from the membranes of nanocapsules. Thus, liquid-ordered and/or gel-phase lipid compositions were required to stably anchor trimers to the particle membranes. Trimer-loaded nanocapsules combined with the clinically relevant adjuvant monophosphoryl lipid A primed high-titer antibody responses in mice at antigen doses ranging from 5 μg to as low as 100 ng, whereas titers dropped more than 50-fold over the same dose range when soluble trimer was mixed with a strong oil-in-water adjuvant comparator. Nanocapsule immunization also broadened the number of distinct epitopes on the HIV trimer recognized by the antibody response. These results suggest that nanocapsules displaying HIV trimers in an oriented, multivalent presentation can promote key aspects of the humoral response against Env immunogens.


Hirschsprung disease is associated with an L286P mutation in the fifth transmembrane domain of the endothelin-B receptor in the N-ethyl-N-nitrosourea-induced mutant line.

  • Bing Chen‎ et al.
  • Experimental animals‎
  • 2016‎

Hirschsprung disease (HSCR), or colonic aganglionosis, is a congenital disorder characterized by the absence of intramural ganglia along variable lengths of the colon, resulting in intestinal obstruction. It is the most common cause of congenital intestinal obstruction, with an incidence of 1 in 5,000 live births. N-ethyl-N-nitrosourea (ENU)-induced mutagenesis is a powerful tool for the study of gene function and the generation of human disease models. In the current study, a novel mutant mouse with aganglionic megacolon and coat color spotting was generated by ENU-induced mutagenesis. Histological and acetylcholinesterase (AChE) whole-mount staining analysis showed a lack of ganglion cells in the colon in mutant mice. The mutation was mapped to chromosome 14 between markers rs30928624 and D14Mit205 (Chr 14 positions 103723921 bp and 105054651 bp). The Ednrb (Chr 14 position 103814625-103844173 bp) was identified as a potential candidate gene in this location. Mutation analysis revealed a T>C missense mutation at nucleotide 857 of the cDNA encoding endothelin receptor B (EDNRB) in which a proline was substituted for the highly conserved Lys-286 residue (L286P) in the fifth transmembrane (TM V) domain of this G protein-coupled receptor. The mutant mouse was named Ednrb(m1yzcm) (Ednrb; mutation 1, Yangzhou University Comparative Medicine Center). The results of the present study implicate the structural importance of the TM V domain in Ednrb function, and the Ednrb(m1yzcm) mouse represents a valuable model for the study of HSCR in humans.


Endovascular brachytherapy combined with portal vein stenting and transarterial chemoembolization improves overall survival of hepatocellular carcinoma patients with main portal vein tumor thrombus.

  • Tian-Zhu Yu‎ et al.
  • Oncotarget‎
  • 2017‎

Hepatocellular carcinoma (HCC) patients with main portal vein tumor thrombus have a median survival time of only about 4 months. We therefore compared the safety and efficacy of endovascular brachytherapy (EVBT) and sequential three-dimensional conformal radiotherapy (3-DCRT). From a cohort of 176 patients, we treated 123 with EVBT using iodine-125 seed strands (group A) and the remaining 53 with sequential 3-DCRT (group B). Overall survival, progression free survival and stent patency characteristics were compared between the two groups. Our analysis demonstrated a median survival of 11.7 ± 1.2 months in group A versus 9.5 ± 1.8 months in group B (p = 0.002). The median progression free survival was 5.3 ± 0.7 months in groupA versus 4.4 ± 0.4 months in group B (p = 0.010). The median stent patency period was 10.3 ± 1.1 months in group A versus 8.7 ± 0.7 months in group B (p = 0.003). Therefore, as compared to sequential 3-DCRT, EVBT combined with portal vein stenting and TACE improved overall survival of HCC patients with main portal vein tumor thrombus.


Evolutionary dynamics of triosephosphate isomerase gene intron location pattern in Metazoa: A new perspective on intron evolution in animals.

  • Bing Chen‎ et al.
  • Gene‎
  • 2017‎

Intron evolution, including its dynamics in the evolutionary transitions and diversification of eukaryotes, remains elusive. Inadequate taxon sampling due to data shortage, unclear phylogenetic framework, and inappropriate outgroup application might be among the causes. Besides, the integrity of all the introns within a gene was often neglected previously. Taking advantage of the ancient conserved triosephosphate isomerase gene (tim), the relatively robust phylogeny of Metazoa, and choanoflagellates as outgroup, the evolutionary dynamics of tim intron location pattern (ILP) in Metazoa was investigated. From 133 representative species of ten phyla, 30 types of ILPs were identified. A most common one, which harbors the maximum six intron positions, is deduced to be the common ancestral tim ILP of Metazoa, which almost had formed in their protozoan ancestor and was surprisingly retained and passed down till to each ancestors of metazoan phyla. In the subsequent animal diversification, it underwent different evolutionary trajectories: within Deuterostomia, it was almost completely retained only with changes in a few species with relatively recently fast-evolving histories, while within the rapidly radiating Protostomia, besides few but remarkable retention, it usually displayed extensive intron losses and a few gains. Therefore, a common ancestral exon-intron arrangement pattern of an animal gene is definitely discovered; besides the 'intron-rich view' of early animal genes being confirmed, the novel insight that high exon-intron re-arrangements of genes seem to be associated with the relatively recently rapid evolution of lineages/species/genomes but have no correlation with the ancient major evolutionary transitions in animal evolution, is revealed.


Preclinical Development of Ipilimumab and Nivolumab Combination Immunotherapy: Mouse Tumor Models, In Vitro Functional Studies, and Cynomolgus Macaque Toxicology.

  • Mark J Selby‎ et al.
  • PloS one‎
  • 2016‎

The monoclonal antibodies ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) have shown remarkable antitumor activity in an increasing number of cancers. When combined, ipilimumab and nivolumab have demonstrated superior activity in patients with metastatic melanoma (CHECKMATE-067). Here we describe the preclinical development strategy that predicted these clinical results. Synergistic antitumor activity in mouse MC38 and CT26 colorectal tumor models was observed with concurrent, but not sequential CTLA-4 and PD-1 blockade. Significant antitumor activity was maintained using a fixed dose of anti-CTLA-4 antibody with decreasing doses of anti-PD-1 antibody in the MC38 model. Immunohistochemical and flow cytometric analyses confirmed that CD3+ T cells accumulated at the tumor margin and infiltrated the tumor mass in response to the combination therapy, resulting in favorable effector and regulatory T-cell ratios, increased pro-inflammatory cytokine secretion, and activation of tumor-specific T cells. Similarly, in vitro studies with combined ipilimumab and nivolumab showed enhanced cytokine secretion in superantigen stimulation of human peripheral blood lymphocytes and in mixed lymphocyte response assays. In a cynomolgus macaque toxicology study, dose-dependent immune-related gastrointestinal inflammation was observed with the combination therapy; this response had not been observed in previous single agent cynomolgus studies. Together, these in vitro assays and in vivo models comprise a preclinical strategy for the identification and development of highly effective antitumor combination immunotherapies.


Roles of palmitoylation and the KIKK membrane-targeting motif in leukemogenesis by oncogenic KRAS4A.

  • Huanbin Zhao‎ et al.
  • Journal of hematology & oncology‎
  • 2015‎

We have previously shown that palmitoylation is essential for NRAS leukemogenesis, suggesting that targeting RAS palmitoylation may be an effective therapy for NRAS-related cancers. For KRAS-driven cancer, although much research has been focused on the KRAS4B splice variant, which does not undergo palmitoylation, KRAS4A has recently been shown to play an essential role in the development of carcinogen-induced lung cancer in mice and to be widely expressed in human cancers. However, the role of palmitoylation in KRAS4A tumorigenesis is not clear.


Association between SLC30A8 rs13266634 Polymorphism and Type 2 Diabetes Risk: A Meta-Analysis.

  • Liqing Cheng‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2015‎

Accumulating but inconsistent data about the role of rs13266634 variant of SLC30A8 in type 2 diabetes have been reported, partly due to small sample sizes and non-identical ethnicity.


Data from proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus).

  • Xiaofang Geng‎ et al.
  • Data in brief‎
  • 2015‎

The Chinese giant salamander (Andrias davidianus), renowned as a living fossil, is the largest and longest-lived amphibian species in the world. Its skin is rich in collagens, and has developed mucous gland which could secrete a large amount of mucus under the scraping and electric stimulation. The molting is the degraded skin stratum corneum. To establish the functional skin proteome of Chinese giant salamander, two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) were applied to detect the composition and relative abundance of the proteins in the skin, mucus and molting. The determination of the general proteome in the skin can potentially serve as a foundation for future studies characterizing the skin proteomes from diseased salamander to provide molecular and mechanistic insights into various disease states and potential therapeutic interventions. Data presented here are also related to the research article "Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus)" in the Journal of Proteomics [1].


Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia.

  • Yuan-Fang Liu‎ et al.
  • EBioMedicine‎
  • 2016‎

Genomic landscapes of 92 adult and 111 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) were investigated using next-generation sequencing and copy number alteration analysis. Recurrent gene mutations and fusions were tested in an additional 87 adult and 93 pediatric patients. Among the 29 newly identified in-frame gene fusions, those involving MEF2D and ZNF384 were clinically relevant and were demonstrated to perturb B-cell differentiation, with EP300-ZNF384 inducing leukemia in mice. Eight gene expression subgroups associated with characteristic genetic abnormalities were identified, including leukemia with MEF2D and ZNF384 fusions in two distinct clusters. In subgroup G4 which was characterized by ERG deletion, DUX4-IGH fusion was detected in most cases. This comprehensive dataset allowed us to compare the features of molecular pathogenesis between adult and pediatric B-ALL and to identify signatures possibly related to the inferior outcome of adults to that of children. We found that, besides the known discrepancies in frequencies of prognostic markers, adult patients had more cooperative mutations and greater enrichment for alterations of epigenetic modifiers and genes linked to B-cell development, suggesting difference in the target cells of transformation between adult and pediatric patients and may explain in part the disparity in their responses to treatment.


Expression and cellular distribution of transient receptor potential vanilloid 4 in cortical tubers of the tuberous sclerosis complex.

  • Xin Chen‎ et al.
  • Brain research‎
  • 2016‎

Cortical tubers in patients with tuberous sclerosis complex (TSC) are highly associated with intractable epilepsy. Recent evidence has shown that transient receptor potential vanilloid 4 (TRPV4) has direct effects on both neurons and glial cells. To understand the role of TRPV4 in pathogenesis of cortical tubers, we investigated the expression patterns of TRPV4 in cortical tubers of TSC compared with normal control cortex (CTX). We found that TRPV4 was clearly up-regulated in cortical tubers at the protein levels. Immunostaining indicated that TRPV4 was specially distributed in abnormal cells, including dysplastic neurons (DNs) and giant cells (GCs). In addition, double immunofluorescent staining revealed that TRPV4 was localized on neurofilament proteins (NF200) positive neurons and glial fibrillary acidic portein (GFAP) positive reactive astrocytes. Moreover, TRPV4 co-localized with both glutamatergic and GABAergic neurons. Furthermore, protein levels of protein kinase C (PKC), but not protein kinase A (PKA), the important upstream factors of the TRPV4, were significantly increased in cortical tubers. Taken together, the overexpression and distribution patterns of TRPV4 may be linked with the intractable epilepsy caused by TSC.


Heat-shock promoters: targets for evolution by P transposable elements in Drosophila.

  • Jean-Claude Walser‎ et al.
  • PLoS genetics‎
  • 2006‎

Transposable elements are potent agents of genomic change during evolution, but require access to chromatin for insertion-and not all genes provide equivalent access. To test whether the regulatory features of heat-shock genes render their proximal promoters especially susceptible to the insertion of transposable elements in nature, we conducted an unbiased screen of the proximal promoters of 18 heat-shock genes in 48 natural populations of Drosophila. More than 200 distinctive transposable elements had inserted into these promoters; greater than 96% are P elements. By contrast, few or no P element insertions segregate in natural populations in a "negative control" set of proximal promoters lacking the distinctive regulatory features of heat-shock genes. P element transpositions into these same genes during laboratory mutagenesis recapitulate these findings. The natural P element insertions cluster in specific sites in the promoters, with up to eight populations exhibiting P element insertions at the same position; laboratory insertions are into similar sites. By contrast, a "positive control" set of promoters resembling heat-shock promoters in regulatory features harbors few P element insertions in nature, but many insertions after experimental transposition in the laboratory. We conclude that the distinctive regulatory features that typify heat-shock genes (in Drosophila) are especially prone to mutagenesis via P elements in nature. Thus in nature, P elements create significant and distinctive variation in heat-shock genes, upon which evolutionary processes may act.


Role of the Death Receptor and Endoplasmic Reticulum Stress Signaling Pathways in Polyphyllin I-Regulated Apoptosis of Human Hepatocellular Carcinoma HepG2 Cells.

  • Qihui Luo‎ et al.
  • BioMed research international‎
  • 2018‎

Polyphyllin has been reported to exhibit anticancer effects against various types of cancer via the proapoptotic signaling pathway. The aim of the present study was to investigate the role of the endoplasmic reticulum stress and death receptor signaling pathways in PPI-induced apoptosis of human hepatocellular carcinoma HepG2 cells. Analysis demonstrated that PPI could significantly inhibit the proliferation and induce apoptosis of HepG2 cells in a dose- and time-dependent manner. Investigation into the molecular mechanism of PPI indicated that PPI notably mediated ER stress activation via IRE-1 overexpression and activation of the caspase-12 to protect HepG2 cells against apoptosis. In addition, PPI markedly induced the expression of death receptors signaling pathways-associated factors, including tumor necrosis factor (TNF) receptor 1/TNF-α and FAS/FASL. Additionally, suppression of the death receptor signaling pathways with a caspase-8 inhibitor, Z-IETD-FMK, revealed an increase in the death rate and apoptotic rate of HepG2 cells. Collectively, the findings of the present study suggested that the ER stress and death receptor signaling pathways were associated with PPI-induced HepG2 cell apoptosis; however, endoplasmic reticulum stress may serve a protective role in this process. The combination of PPI and Z-IETD-FMK may activate necroptosis, which enhances apoptosis. Therefore, the results of the present study may improve understanding regarding the roles of signaling pathways in PPI regulated apoptosis and contribute to the development of novel therapies for the treatment of HCC.


Integrative analysis of differential genes and identification of a "2-gene score" associated with survival in esophageal squamous cell carcinoma.

  • Lin Wang‎ et al.
  • Thoracic cancer‎
  • 2019‎

Developments in high-throughput genomic technologies have led to improved understanding of the molecular underpinnings of esophageal squamous cell carcinoma (ESCC). However, there is currently no model that combines the clinical features and gene expression signatures to predict outcomes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: