Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

p21-activated kinase 1 restricts tonic endocannabinoid signaling in the hippocampus.

  • Shuting Xia‎ et al.
  • eLife‎
  • 2016‎

PAK1 inhibitors are known to markedly improve social and cognitive function in several animal models of brain disorders, including autism, but the underlying mechanisms remain elusive. We show here that disruption of PAK1 in mice suppresses inhibitory neurotransmission through an increase in tonic, but not phasic, secretion of endocannabinoids (eCB). Consistently, we found elevated levels of anandamide (AEA), but not 2-arachidonoylglycerol (2-AG) following PAK1 disruption. This increased tonic AEA signaling is mediated by reduced cyclooxygenase-2 (COX-2), and COX-2 inhibitors recapitulate the effect of PAK1 deletion on GABAergic transmission in a CB1 receptor-dependent manner. These results establish a novel signaling process whereby PAK1 upregulates COX-2, reduces AEA and restricts tonic eCB-mediated processes. Because PAK1 and eCB are both critically involved in many other organ systems in addition to the brain, our findings may provide a unified mechanism by which PAK1 regulates these systems and their dysfunctions including cancers, inflammations and allergies.


MAP7D2 Localizes to the Proximal Axon and Locally Promotes Kinesin-1-Mediated Cargo Transport into the Axon.

  • Xingxiu Pan‎ et al.
  • Cell reports‎
  • 2019‎

The motor protein kinesin-1 plays an important role in polarized sorting of transport vesicles to the axon. However, the mechanism by which the axonal entry of kinesin-1-dependent cargo transport is regulated remains unclear. Microtubule-associated protein MAP7 (ensconsin in Drosophila) is an essential kinesin-1 cofactor and promotes kinesin-1 recruitment to microtubules. Here, we found that MAP7 family member MAP7D2 concentrates at the proximal axon, where it overlaps with the axon initial segment and interacts with kinesin-1. Depletion of MAP7D2 results in reduced axonal cargo entry and defects in axon development and neuronal migration. We propose a model in which MAP7D2 in the proximal axon locally promotes kinesin-1-mediated cargo entry into the axon.


WDR47 protects neuronal microtubule minus ends from katanin-mediated severing.

  • Robin R Buijs‎ et al.
  • Cell reports‎
  • 2021‎

Axons and dendrites are long extensions of neurons that contain arrays of noncentrosomal microtubules. Calmodulin-regulated spectrin-associated proteins (CAMSAPs) bind to and stabilize free microtubule minus ends and are critical for proper neuronal development and function. Previous studies have shown that the microtubule-severing ATPase katanin interacts with CAMSAPs and limits the length of CAMSAP-decorated microtubule stretches. However, how CAMSAP and microtubule minus end dynamics are regulated in neurons is poorly understood. Here, we show that the neuron-enriched protein WDR47 interacts with CAMSAPs and is critical for axon and dendrite development. We find that WDR47 accumulates at CAMSAP2-decorated microtubules, is essential for maintaining CAMSAP2 stretches, and protects minus ends from katanin-mediated severing. We propose a model where WDR47 protects CAMSAP2 at microtubule minus ends from katanin activity to ensure proper stabilization of the neuronal microtubule network.


ChREBP is activated by reductive stress and mediates GCKR-associated metabolic traits.

  • Charandeep Singh‎ et al.
  • Cell metabolism‎
  • 2024‎

Common genetic variants in glucokinase regulator (GCKR), which encodes GKRP, a regulator of hepatic glucokinase (GCK), influence multiple metabolic traits in genome-wide association studies (GWASs), making GCKR one of the most pleiotropic GWAS loci in the genome. It is unclear why. Prior work has demonstrated that GCKR influences the hepatic cytosolic NADH/NAD+ ratio, also referred to as reductive stress. Here, we demonstrate that reductive stress is sufficient to activate the transcription factor ChREBP and necessary for its activation by the GKRP-GCK interaction, glucose, and ethanol. We show that hepatic reductive stress induces GCKR GWAS traits such as increased hepatic fat, circulating FGF21, and circulating acylglycerol species, which are also influenced by ChREBP. We define the transcriptional signature of hepatic reductive stress and show its upregulation in fatty liver disease and downregulation after bariatric surgery in humans. These findings highlight how a GCKR-reductive stress-ChREBP axis influences multiple human metabolic traits.


PAK1 regulates cortical development via promoting neuronal migration and progenitor cell proliferation.

  • Xingxiu Pan‎ et al.
  • Molecular brain‎
  • 2015‎

p21-activated kinase 1 (PAK1) is a serine/threonine kinase known to be activated by the Rho family small GTPases and to play a key role in cytoskeletal reorganization, spine morphology and synaptic plasticity. PAK1 is also implicated in a number of neurodevelopmental and neurodegenerative diseases, including autism, intellectual disability and Alzheimer's disease. However, the role of PAK1 in early brain development remains unknown.


Feedback-Driven Assembly of the Axon Initial Segment.

  • Amélie Fréal‎ et al.
  • Neuron‎
  • 2019‎

The axon initial segment (AIS) is a unique neuronal compartment that plays a crucial role in the generation of action potential and neuronal polarity. The assembly of the AIS requires membrane, scaffolding, and cytoskeletal proteins, including Ankyrin-G and TRIM46. How these components cooperate in AIS formation is currently poorly understood. Here, we show that Ankyrin-G acts as a scaffold interacting with End-Binding (EB) proteins and membrane proteins such as Neurofascin-186 to recruit TRIM46-positive microtubules to the plasma membrane. Using in vitro reconstitution and cellular assays, we demonstrate that TRIM46 forms parallel microtubule bundles and stabilizes them by acting as a rescue factor. TRIM46-labeled microtubules drive retrograde transport of Neurofascin-186 to the proximal axon, where Ankyrin-G prevents its endocytosis, resulting in stable accumulation of Neurofascin-186 at the AIS. Neurofascin-186 enrichment in turn reinforces membrane anchoring of Ankyrin-G and subsequent recruitment of TRIM46-decorated microtubules. Our study reveals feedback-based mechanisms driving AIS assembly.


Feedback-Driven Mechanisms between Microtubules and the Endoplasmic Reticulum Instruct Neuronal Polarity.

  • Ginny G Farías‎ et al.
  • Neuron‎
  • 2019‎

Establishment of neuronal polarity depends on local microtubule (MT) reorganization. The endoplasmic reticulum (ER) consists of cisternae and tubules and, like MTs, forms an extensive network throughout the entire cell. How the two networks interact and control neuronal development is an outstanding question. Here we show that the interplay between MTs and the ER is essential for neuronal polarity. ER tubules localize within the axon, whereas ER cisternae are retained in the somatodendritic domain. MTs are essential for axonal ER tubule stabilization, and, reciprocally, the ER is required for stabilizing and organizing axonal MTs. Recruitment of ER tubules into one minor neurite initiates axon formation, whereas ER retention in the perinuclear area or disruption of ER tubules prevent neuronal polarization. The ER-shaping protein P180, present in axonal ER tubules, controls axon specification by regulating local MT remodeling. We propose a model in which feedback-driven regulation between the ER and MTs instructs neuronal polarity.


The HAUS Complex Is a Key Regulator of Non-centrosomal Microtubule Organization during Neuronal Development.

  • Inês Cunha-Ferreira‎ et al.
  • Cell reports‎
  • 2018‎

Neuron morphology and function are highly dependent on proper organization of the cytoskeleton. In neurons, the centrosome is inactivated early in development, and acentrosomal microtubules are generated by mechanisms that are poorly understood. Here, we show that neuronal migration, development, and polarization depend on the multi-subunit protein HAUS/augmin complex, previously described to be required for mitotic spindle assembly in dividing cells. The HAUS complex is essential for neuronal microtubule organization by ensuring uniform microtubule polarity in axons and regulation of microtubule density in dendrites. Using live-cell imaging and high-resolution microscopy, we found that distinct HAUS clusters are distributed throughout neurons and colocalize with γ-TuRC, suggesting local microtubule nucleation events. We propose that the HAUS complex locally regulates microtubule nucleation events to control proper neuronal development.


Microtubule Minus-End Binding Protein CAMSAP2 and Kinesin-14 Motor KIFC3 Control Dendritic Microtubule Organization.

  • Yujie Cao‎ et al.
  • Current biology : CB‎
  • 2020‎

Neuronal dendrites are characterized by an anti-parallel microtubule organization. The mixed oriented microtubules promote dendrite development and facilitate polarized cargo trafficking; however, the mechanism that regulates dendritic microtubule organization is still unclear. Here, we found that the kinesin-14 motor KIFC3 is important for organizing dendritic microtubules and to control dendrite development. The kinesin-14 motor proteins (Drosophila melanogaster Ncd, Saccharomyces cerevisiae Kar3, Saccharomyces pombe Pkl1, and Xenopus laevis XCTK2) are characterized by a C-terminal motor domain and are well described to organize the spindle microtubule during mitosis using an additional microtubule binding site in the N terminus [1-4]. In mammals, there are three kinesin-14 members, KIFC1, KIFC2, and KIFC3. It was recently shown that KIFC1 is important for organizing axonal microtubules in neurons, a process that depends on the two microtubule-interacting domains [5]. Unlike KIFC1, KIFC2 and KIFC3 lack the N-terminal microtubule binding domain and only have one microtubule-interacting domain, the motor domain [6, 7]. Thus, in order to regulate microtubule-microtubule crosslinking or sliding, KIFC2 and KIFC3 need to interact with additional microtubule binding proteins to connect two microtubules. We found that KIFC3 has a dendrite-specific distribution and interacts with microtubule minus-end binding protein CAMSAP2. Depletion of KIFC3 or CAMSAP2 results in increased microtubule dynamics during dendritic development. We propose a model in which CAMSAP2 anchors KIFC3 at microtubule minus ends and immobilizes microtubule arrays in dendrites.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: