Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Vitamin D supplementation enhances the fixation of titanium implants in chronic kidney disease mice.

  • Weiqing Liu‎ et al.
  • PloS one‎
  • 2014‎

Vitamin D (Vit D) deficiency is a common condition in chronic kidney disease (CKD) patients that negatively affects bone regeneration and fracture healing. Previous study has shown that timely healing of titanium implants is impaired in CKD. This study aimed to investigate the effect of Vit D supplementation on implant osseointegration in CKD mice. Uremia was induced by 5/6 nephrectomy in C57BL mice. Eight weeks after the second renal surgery, animals were given 1,25(OH)2D3 three times a week intraperitoneally for four weeks. Experimental titanium implants were inserted into the distal end of femurs two weeks later. Serum measurements confirmed decreased 1,25(OH)2D levels in CKD mice, which could be successfully corrected by Vit D injections. Moreover, the hyperparathyroidism observed in CKD mice was also corrected. X-ray examination and histological sections showed successful osseointegration in these mice. Histomorphometrical analysis revealed that the bone-implant contact (BIC) ratio and bone volume (BV/TV) around the implant were significantly increased in the Vit D-supplementation group. In addition, resistance of the implant, as measured by a push-in method, was significantly improved compared to that in the vehicle group. These results demonstrate that Vit D supplementation is an effective approach to improve the fixation of titanium implants in CKD.


Chronic Kidney Disease Impairs Bone Defect Healing in Rats.

  • Weiqing Liu‎ et al.
  • Scientific reports‎
  • 2016‎

Chronic kidney disease (CKD) has been regarded as a risk for bone health. The aim of this study was to evaluate the effect of CKD on bone defect repair in rats. Uremia was induced by subtotal renal ablation, and serum levels of BUN and PTH were significantly elevated four weeks after the second renal surgery. Calvarial defects of 5-mm diameter were created and implanted with or without deproteinized bovine bone mineral (DBBM). Micro-CT and histological analyses consistently revealed a decreased newly regenerated bone volume for CKD rats after 4 and 8 weeks. In addition, 1.4-mm-diameter cortical bone defects were established in the distal end of femora and filled with gelatin sponge. CKD rats exhibited significantly lower values of regenerated bone and bone mineral density (BMD) within the cortical gap after 2 and 4 weeks. Moreover, histomorphometric analysis showed an increase in both osteoblast number (N.Ob/B.Pm) and osteoclast number (N.Oc/B.Pm) in CKD groups due to hyperparathyroidism. Notably, collagen maturation was delayed in CKD rats as verified by Masson's Trichrome staining. These data indicate that declined renal function negatively affects bone regeneration in both calvarial and femoral defects.


Growth cone-localized microtubule organizing center establishes microtubule orientation in dendrites.

  • Xing Liang‎ et al.
  • eLife‎
  • 2020‎

A polarized arrangement of neuronal microtubule arrays is the foundation of membrane trafficking and subcellular compartmentalization. Conserved among both invertebrates and vertebrates, axons contain exclusively 'plus-end-out' microtubules while dendrites contain a high percentage of 'minus-end-out' microtubules, the origins of which have been a mystery. Here we show that in Caenorhabditis elegans the dendritic growth cone contains a non-centrosomal microtubule organizing center (MTOC), which generates minus-end-out microtubules along outgrowing dendrites and plus-end-out microtubules in the growth cone. RAB-11-positive endosomes accumulate in this region and co-migrate with the microtubule nucleation complex γ-TuRC. The MTOC tracks the extending growth cone by kinesin-1/UNC-116-mediated endosome movements on distal plus-end-out microtubules and dynein clusters this advancing MTOC. Critically, perturbation of the function or localization of the MTOC causes reversed microtubule polarity in dendrites. These findings unveil the endosome-localized dendritic MTOC as a critical organelle for establishing axon-dendrite polarity.


TRIF Regulates BIC/miR-155 via the ERK Signaling Pathway to Control the ox-LDL-Induced Macrophage Inflammatory Response.

  • Yaxi Wu‎ et al.
  • Journal of immunology research‎
  • 2018‎

Toll/IL-1R-domain-containing adaptor-inducing IFN-β (TRIF) is an important adaptor for TLR3- and TLR4-mediated inflammatory signaling pathways. Recent studies have shown that TRIF plays a key role in vessel inflammation and atherosclerosis; however, the precise mechanisms are unclear. We investigated the mechanisms of the TRIF-regulated inflammatory response in RAW264.7 macrophages under oxidized low-density lipoprotein (ox-LDL) stimulation. Our data show that ox-LDL induces TRIF, miR-155, and BIC expression, activates the ERK1/2 and SOCS1-STAT3-NF-κB signaling pathways, and elevates the levels of IL-6 and TNF-α in RAW264.7 cells. Knockdown of TRIF using TRIF siRNA suppressed BIC, miR-155, IL-6, and TNF-α expression and inhibited the ERK1/2 and SOCS1-STAT3-NF-κB signaling pathways. Inhibition of ERK1/2 signaling also suppressed BIC and miR-155 expression. These findings suggest that TRIF plays an important role in regulating the ox-LDL-induced macrophage inflammatory response and that TRIF modulates the expression of BIC/miR-155 and the downstream SOCS1-STAT3-NF-κB signaling pathway via ERK1/2. Therefore, TRIF might be a novel therapeutic target for atherosclerosis.


SYT8 promotes pancreatic cancer progression via the TNNI2/ERRα/SIRT1 signaling pathway.

  • Zhiping Fu‎ et al.
  • Cell death discovery‎
  • 2021‎

Pancreatic cancer is a highly lethal malignancy due to failures of early detection and high metastasis in patients. While certain genetic mutations in tumors are associated with severity, the molecular mechanisms responsible for cancer progression are still poorly understood. Synaptotagmin-8 (SYT8) is a membrane protein that regulates hormone secretion and neurotransmission, and its expression is positively regulated by the promoter of the insulin gene in pancreatic islet cells. In this study, we identified a previously unknown role of SYT8 in altering tumor characteristics in pancreatic cancer. SYT8 levels were upregulated in patient tumors and contributed towards increased cell proliferation, migration, and invasion in vitro and in vivo. Increased SYT8 expression also promoted tumor metastasis in an in vivo tumor metastasis model. Furthermore, we showed that SYT8-mediated increase in tumorigenicity was regulated by SIRT1, a protein deacetylase previously known to alter cell metabolism in pancreatic lesions. SIRT1 expression was altered by orphan nuclear receptor ERRα and troponin-1 (TNNI2), resulting in cell proliferation and migration in an SYT8-dependent manner. Together, we identified SYT8 to be a central regulator of tumor progression involving signaling via the SIRT1, ERRα, and TNNI2 axis. This knowledge may provide the basis for the development of therapeutic strategies to restrict tumor metastasis in pancreatic cancer.


GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation.

  • Weiqing Liu‎ et al.
  • Nature communications‎
  • 2016‎

Osteoporosis is an age-related disease that affects millions of people. Growth differentiation factor 11 (GDF11) is a secreted member of the transforming growth factor beta (TGF-β) superfamily. Deletion of Gdf11 has been shown to result in a skeletal anterior-posterior patterning disorder. Here we show a role for GDF11 in bone remodelling. GDF11 treatment leads to bone loss in both young and aged mice. GDF11 inhibits osteoblast differentiation and also stimulates RANKL-induced osteoclastogenesis through Smad2/3 and c-Fos-dependent induction of Nfatc1. Injection of GDF11 impairs bone regeneration in mice and blocking GDF11 function prevents oestrogen-deficiency-induced bone loss and ameliorates age-related osteoporosis. Our data demonstrate that GDF11 is a previously unrecognized regulator of bone remodelling and suggest that GDF11 is a potential target for treatment of osteoporosis.


Effects of Herbal Mouthwashes on Plaque and Inflammation Control for Patients with Gingivitis: A Systematic Review and Meta-Analysis of Randomised Controlled Trials.

  • He Cai‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2020‎

The aim of this study was to evaluate the overall effects of herbal mouthwashes as supplements to daily oral hygiene on plaque and inflammation control compared with placebos and chlorhexidine (CHX) mouthwashes in the treatment of gingivitis.


Long-term study on the osteogenetic capability and mechanical behavior of a new resorbable biocomposite anchor in a canine model.

  • Xiao-Yan Cao‎ et al.
  • Journal of orthopaedic translation‎
  • 2020‎

Biodegradable suture anchors are commonly used for repairing torn rotator cuffs, but these biodegradable materials still suffer from low mechanical strength, poor osteointegration, and the generation of acidic degradation byproducts.


Runx1 regulates Tff1 expression to expedite viability of retinal microvascular endothelial cells in mice with diabetic retinopathy.

  • Wei Zhang‎ et al.
  • Experimental eye research‎
  • 2022‎

Diabetic retinopathy (DR) represents a major complication of diabetes, and molecular mechanisms related to vascular dysfunction, particularly endothelial dysfunction, in DR remains unclear. In the present work, we generated a DR animal model using mice and a cell model in mouse retinal microvascular endothelial cells (mRMECs) to examine the role of Trefoil factor family 1 (Tff1) in DR. Tff1 was poorly expressed in DR mice and high glucose (HG)-treated mRMECs. Overexpression of Tff1 significantly attenuated streptozotocin-induced retinal proliferation and angiogenesis in DR mice and reduced the secretion of inflammatory factors. In HG-treated mRMECs, overexpression of Tff1 remarkably reduced the proliferation and angiogenesis of mRMECs. In further experiments, we found that Tff1 was transcriptionally repressed by Runt-related transcription factor 1 (Runx1) directly, and Tff1 expression was indirectly modulated by Runx1 via the core-binding factor subunit beta (CBF-β)/nuclear factor, erythroid 2/microRNA-423-5p axis and the CBF-β/estrogen receptor 1 (ESR1) axis. Moreover, Tff1 could inhibit the activation of NF-κB signaling pathway, which in turn attenuated retinal endothelial cell proliferation and angiogenesis. It was thus proposed that Runx1/Tff1/NF-κB axis may be a potential target for the treatment strategy of DR, and further studies are needed.


The THO Complex Coordinates Transcripts for Synapse Development and Dopamine Neuron Survival.

  • Celine I Maeder‎ et al.
  • Cell‎
  • 2018‎

Synaptic vesicle and active zone proteins are required for synaptogenesis. The molecular mechanisms for coordinated synthesis of these proteins are not understood. Using forward genetic screens, we identified the conserved THO nuclear export complex (THOC) as an important regulator of presynapse development in C. elegans dopaminergic neurons. In THOC mutants, synaptic messenger RNAs are retained in the nucleus, resulting in dramatic decrease of synaptic protein expression, near complete loss of synapses, and compromised dopamine function. CRE binding protein (CREB) interacts with THOC to mark synaptic transcripts for efficient nuclear export. Deletion of Thoc5, a THOC subunit, in mouse dopaminergic neurons causes severe defects in synapse maintenance and subsequent neuronal death in the substantia nigra compacta. These cellular defects lead to abrogated dopamine release, ataxia, and animal death. Together, our results argue that nuclear export mechanisms can select specific mRNAs and be a rate-limiting step for neuronal differentiation and survival.


Sarcomeres Pattern Proprioceptive Sensory Dendritic Endings through UNC-52/Perlecan in C. elegans.

  • Xing Liang‎ et al.
  • Developmental cell‎
  • 2015‎

Sensory dendrites innervate peripheral tissues through cell-cell interactions that are poorly understood. The proprioceptive neuron PVD in C. elegans extends regular terminal dendritic branches between muscle and hypodermis. We found that the PVD branch pattern was instructed by adhesion molecule SAX-7/L1CAM, which formed regularly spaced stripes on the hypodermal cell. The regularity of the SAX-7 pattern originated from the repeated and regularly spaced dense body of the sarcomeres in the muscle. The extracellular proteoglycan UNC-52/Perlecan linked the dense body to the hemidesmosome on the hypodermal cells, which in turn instructed the SAX-7 stripes and PVD dendrites. Both UNC-52 and hemidesmosome components exhibited highly regular stripes that interdigitated with the SAX-7 stripe and PVD dendrites, reflecting the striking precision of subcellular patterning between muscle, hypodermis, and dendrites. Hence, the muscular contractile apparatus provides the instructive cues to pattern proprioceptive dendrites.


Downregulated F-Box/LRR-Repeat Protein 7 Facilitates Pancreatic Cancer Metastasis by Regulating Snail1 for Proteasomal Degradation.

  • Liang Tang‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Pancreatic cancer (PCa) is one of the most aggressive lethal malignancies, and cancer metastasis is the major cause of PCa-associated death. F-box/LRR-repeat protein 7 (FBXL7) regulates cancer metastasis and the chemosensitivity of human pancreatic cancer. However, the clinical significance and biological role of FBXL7 in PCa have been rarely studied. In this study, we found that the expression of FBXL7 was down-regulated in PCa tissues compared with tumor-adjacent tissues, and the low expression of FBXL7 was positively associated with cancer metastasis. Functionally, overexpression of FBXL7 attenuated PANC1 cell invasion, whereas FBXL7 silencing promoted BxPC-3 cell invasion. Forced expression of FBXL7 upregulated the expression of epithelial markers (e.g., E-cadherin) and repressed the expression of mesenchymal markers (e.g., N-cadherin and Vimentin), indicating that FBXL7 negatively regulated the epithelial-mesenchymal transition (EMT) of PCa cells. Furthermore, we identified that FBXL7 repressed the expression of Snail1, a crucial transcription factor of EMT. Mechanistically, FBXL7 bound to Snail1 and promoted its ubiquitination and proteasomal degradation. In vivo studies demonstrated that FBXL7 inhibition promotes PCa metastasis. Taken together, our findings demonstrate that FBXL7 knockdown could efficiently enhance PCa metastasis by regulating Snail1-dependent EMT.


Zinc(II) Terpyridine Complexes: Substituent Effect on Photoluminescence, Antiproliferative Activity, and DNA Interaction.

  • Jiahe Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

A series of ZnCl2 complexes (compounds 1-10) with 4'-(substituted-phenyl)-2,2':6',2''-terpyridine that bears hydrogen (L1), p-methyl (L2), p-methoxy (L3), p-phenyl (L4), p-tolyl (L5), p-hydroxyl (L6), m-hydroxyl (L7), o-hydroxyl (L8), p-carboxyl (L9), or p-methylsulfonyl (L10) were prepared and then characterized by 1H NMR, electrospray mass-spectra (ESI-MS), IR, elemental analysis, and single crystal X-ray diffraction. In vitro cytotoxicity assay was used to monitor the antiproliferative activities against tumor cells. Absorption spectroscopy, fluorescence titration, circular dichroism spectroscopy, and molecular modeling studied the DNA interactions. All of the compounds display interesting photoluminescent properties and different maximal emission peaks due to the difference of the substituent groups. The cell viability studies indicate that the compounds have excellent antiproliferative activity against four human carcinoma cell lines, A549, Bel-7402, MCF-7, and Eca-109, with the lowest IC50 values of 0.33 (10), 0.66 (6), 0.37 (7), and 1.05 (7) μM, respectively. The spectrophotometric results reveal that the compounds have strong affinity binding with DNA as intercalator and induce DNA conformational transition. Molecular docking studies indicate that the binding is contributed by the π…π stacking and hydrogen bonds, providing an order of nucleotide sequence binding selectivity as ATGC > ATAT > GCGC. These compounds intercalate into the base pairs of the DNA of the tumor cells to affect their replication and transcription, and the process is supposed to play an important role in the anticancer mechanism.


The feedback loop of "EMMPRIN/NF-κB" worsens atherosclerotic plaque via suppressing autophagy in macrophage.

  • Xing Liang‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2018‎

This study examined the significance of macrophage autophagy in extracellular matrix metalloproteinase inducer (EMMPRIN)-mediated atherosclerosis (AS). Apolipoprotein E-deficient (ApoE-/-) mice were fed a western diet to establish an AS model. EMMPRIN and p62/Sequestosome-1(SQSTM1) expression were evaluated in plaque macrophages from the AS mice using immunofluorescence. The EMMPRIN and p62/SQSTM1 protein expression levels in macrophages increased with the increasing vulnerability of the atherosclerotic plaques. RAW264.7 cells and ApoE-/- mice Bone Marrow-derived macrophages were transfected with different small interfering RNAs (siRNAs) or plasmids, or treated with different drugs in the presence or absence of oxidized low-density lipoprotein (oxLDL). The protein levels of the targets were evaluated using western blotting (WB), and the autophagosomes were observed under a transmission electron microscope (TEM). Over-expressed EMMPRIN dramatically inhibited oxLDL-mediated autophagy. EMMPRIN also negatively regulated autophagy primarily through the nuclear factor-kappa B (NF-κB) signalling pathway. In turn, activated NF-κB up-regulated EMMPRIN expression. Inhibition of EMMPRIN decreased cell apoptosis and the release of inflammatory cytokines via the promotion of macrophage autophagy. Infection with an adenovirus delivering the EMMPRIN-siRNA ameliorated AS, promoted macrophage autophagy in plaques and reduced the serum TNF-α, IL-6, MCP-1 and NF-κB expression levels in the AS mice. Chloroquine (CQ) reversed these effects. This study revealed for the first time that the feedback loop of the "EMMPRIN/NF-κB" pathway plays an important role in atherosclerotic plaques via modulation of autophagy in macrophages, which might provide a potential strategy for the clinical treatment of AS.


A Dendritic Guidance Receptor Complex Brings Together Distinct Actin Regulators to Drive Efficient F-Actin Assembly and Branching.

  • Wei Zou‎ et al.
  • Developmental cell‎
  • 2018‎

Proper morphogenesis of dendrites plays a fundamental role in the establishment of neural circuits. The molecular mechanism by which dendrites grow highly complex branches is not well understood. Here, using the Caenorhabditis elegans PVD neuron, we demonstrate that high-order dendritic branching requires actin polymerization driven by coordinated interactions between two membrane proteins, DMA-1 and HPO-30, with their cytoplasmic interactors, the RacGEF TIAM-1 and the actin nucleation promotion factor WAVE regulatory complex (WRC). The dendrite branching receptor DMA-1 directly binds to the PDZ domain of TIAM-1, while the claudin-like protein HPO-30 directly interacts with the WRC. On dendrites, DMA-1 and HPO-30 form a receptor-associated signaling complex to bring TIAM-1 and the WRC to close proximity, leading to elevated assembly of F-actin needed to drive high-order dendrite branching. The synergistic activation of F-actin assembly by scaffolding distinct actin regulators might represent a general mechanism in promoting complex dendrite arborization.


microRNA-211 promotes proliferation, migration, and invasion ability of oral squamous cell carcinoma cells via targeting the bridging integrator 1 protein.

  • Jiabao Zheng‎ et al.
  • Journal of cellular biochemistry‎
  • 2019‎

Oral squamous cell carcinoma (OSCC), the most common pathological type of oral cancer, is still a frequent malignancy with unsatisfactory prognosis. Accumulating studies have proven some microRNAs (miRNAs) can function as oncogenes in OSCC by targeting tumor suppressors. In this study, we first investigated the expression and role of tumor suppressor bridging integrator-1 (BIN1) in OSCC tissues and cells. Our results indicated that BIN1 was low expressed in the OSCC tissues and cell lines (SCC6, SCC9, SCC25, HN4, and HN6) along with miR-211 was highly expressed in OSCC tissues and cell lines, and BIN1 overexpression could evidently inhibit their proliferation, migration, and invasion abilities. Next, we used bioinformation algorithms to predict the potential miRNA targeting BIN1 and chose miR-211 for further study. miR-211, a highly expressed miRNA in OSCC cells, could specifically bind with the 3'-untranslated region (3'-UTR) of BIN1 to trigger its degradation. Addition of miR-211 inhibitor could evidently suppress the malignant behaviors of OSCC cells by upregulating BIN1 expression and inhibit the activation of the EGFR/MAPK pathway. Taken together the findings of the study indicated that miR-211 mediated BIN1 downregulation had crucial significances in OSCC, suggesting the miR-211 might be a novel potential therapeutic target for the OSCC treatment.


The RNA methyltransferase NSUN6 suppresses pancreatic cancer development by regulating cell proliferation.

  • Ruimeng Yang‎ et al.
  • EBioMedicine‎
  • 2021‎

Pancreatic cancer (PC) is one of the most lethal solid malignancies in the world due to its excessive cell proliferation and aggressive metastatic features. Emerging evidences revealed the importance of posttranscriptional modifications of RNAs in PC progression. However, knowledge about the 5-methylcytosine (m5C) RNA modification in PC is still extremely limited. In this study, we attempted to explore the expression changes and clinical significances of 12 known m5C-related genes among PC patients.


Synthesis, Characterization, Photoluminescence, Molecular Docking and Bioactivity of Zinc (II) Compounds Based on Different Substituents.

  • Rongping Liu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Six new zinc(II) complexes were prepared by the reaction of ZnBr2 or ZnI2 with 4'-(substituted-phenyl)-2,2':6',2''-terpyridine compounds, bearing p-methylsulfonyl (L1), p-methoxy (L2) and p-methyl (L3), which were characterized by elemental analysis, FT-IR, NMR and single crystal X-ray diffraction. The antiproliferative properties against Eca-109, A549 and Bel-7402 cell lines and the cytotoxicity test on RAW-264.7 of these compounds were monitored using a CCK-8 assay, and the studies indicate that the complexes show higher antiproliferative activities than cisplatin. The interactions of these complexes with CT-DNA and proteins (BSA) were studied by UV-Vis, circular dichroism (CD) and fluorescent spectroscopy, respectively. The results indicate that the interaction of these zinc(II) complexes with CT-DNA is achieved through intercalative binding, and their strong binding affinity to BSA is fulfilled through a static quenching mechanism. The simulation of the complexes with the CT-DNA fragment and BSA was studied by using molecular docking software. It further validates that the complexes interact with DNA through intercalative binding mode and that they have a strong interaction with BSA.


Proximity labeling reveals non-centrosomal microtubule-organizing center components required for microtubule growth and localization.

  • Ariana D Sanchez‎ et al.
  • Current biology : CB‎
  • 2021‎

Microtubules are polarized intracellular polymers that play key roles in the cell, including in transport, polarity, and cell division. Across eukaryotic cell types, microtubules adopt diverse intracellular organization to accommodate these distinct functions coordinated by specific cellular sites called microtubule-organizing centers (MTOCs). Over 50 years of research on MTOC biology has focused mainly on the centrosome; however, most differentiated cells employ non-centrosomal MTOCs (ncMTOCs) to organize their microtubules into diverse arrays, which are critical to cell function. To identify essential ncMTOC components, we developed the biotin ligase-based, proximity-labeling approach TurboID for use in C. elegans. We identified proteins proximal to the microtubule minus end protein PTRN-1/Patronin at the apical ncMTOC of intestinal epithelial cells, focusing on two conserved proteins: spectraplakin protein VAB-10B/MACF1 and WDR-62, a protein we identify as homologous to vertebrate primary microcephaly disease protein WDR62. VAB-10B and WDR-62 do not associate with the centrosome and instead specifically regulate non-centrosomal microtubules and the apical targeting of microtubule minus-end proteins. Depletion of VAB-10B resulted in microtubule mislocalization and delayed localization of a microtubule nucleation complex ɣ-tubulin ring complex (γ-TuRC), while loss of WDR-62 decreased the number of dynamic microtubules and abolished γ-TuRC localization. This regulation occurs downstream of cell polarity and in conjunction with actin. As this is the first report for non-centrosomal roles of WDR62 family proteins, we expand the basic cell biological roles of this important disease protein. Our studies identify essential ncMTOC components and suggest a division of labor where microtubule growth and localization are distinctly regulated.


Effects of a Chinese herbal extract on the intestinal tract and aquaporin in Adriamycin-induced nephropathy.

  • Weizhong Ma‎ et al.
  • Bioengineered‎
  • 2022‎

Wuling Decoction is a traditional Chinese medicine that has been used to open knots, benefit water, transform Qi, return fluid, and has a significant effect on strengthening the spleen and removing dampness. To explore the effects of Wuling Decoction on the intestinal tract and aquaporin in Adriamycin-induced nephropathy, 45 specific pathogen free (SPF) Wistar rats were randomly divided into a blank control group (5 rats), Dosing control group (10 rats), Adriamycin nephropathy model group (10 rats), diarrhea group (10 rats), and an Adriamycin nephropathy diarrhea model group (10 rats). The tissue localization of aquaporin (AQP) was determined by immunohistochemistry. The expression of AQP mRNA and protein was measured by RT-PCR and western blot analysis, respectively. The results indicated that Wuling Decoction causes excretion of AQP2 through the urine, regulates AQP2 levels, and exerts diuretic and anti-diarrheal effects. It also regulates the levels of antidiuretic hormone (ADH) and arginine vasopressin (AVP), affects water absorption rate, and reduces the level of cyclic adenosine monophosphate (cAMP) in each tissue, thus reducing the absorption of AQP2 to water. Wuling Decoction promoted AQP2 expression in the nephropathy model group and inhibited AQP2 expression in the diarrhea group. Wuling Decoction increased the expression of aquaporin in the intestinal tract, reduced the water content of stool by promoting the absorption of water in the intestinal tract, inhibited the expression of aquaporin and its regulatory factors in nephridia tissue, and reduced the reabsorption of water to increase urine volume, to decrease the occurrence of diarrhea.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: