Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 162 papers

Risk Factors for Stroke in the Chinese Population: A Systematic Review and Meta-Analysis.

  • Jing Wang‎ et al.
  • Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association‎
  • 2017‎

Stroke is the leading cause of death in China. According to the Chinese Stroke Screening and Prevention Project, 8 main risk factors were assessed and individuals with 3 or more risk factors were identified as high-risk population of stroke. To explore the potential impropriety of counting the risk factors but ignoring the different strength of association of each risk factor, we performed this study.


YPEL3 suppresses epithelial-mesenchymal transition and metastasis of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway.

  • Jian Zhang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2016‎

Metastasis remains the major cause of death in nasopharyngeal carcinoma (NPC). Yippee-like 3 (YPEL3) plays an important role in tumorigenesis. However, its function and mechanism in NPC has not been systematically explored.


Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes.

  • Georg von Jonquieres‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2016‎

Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene expression (>90%) in vivo. Moreover, cy5-MAG2.2-GFP delivery to the neonate CNS resulted in selective GFP expression in oligodendrocytes for at least 8 months. Broadly, the characterization of the extremely short yet oligodendrocyte-specific human MAG promoter may facilitate modeling neurological diseases caused by oligodendrocyte pathology and has translational relevance for leukodystrophy gene therapy.


Associations of TGFBR1 and TGFBR2 gene polymorphisms with the risk of hypospadias: a case-control study in a Chinese population.

  • Xin-Rui Han‎ et al.
  • Bioscience reports‎
  • 2017‎

This case-control study investigated the association of transforming growth factor-β (TGF-β) receptor type I and II (TGFBR1 and TGFBR2) gene polymorphisms with the risk of hypospadias in a Chinese population. One hundred and sixty two patients suffering from hypospadias were enrolled as case group and 165 children who underwent circumcision were recruited as control group. Single nucleotide polymorphisms (SNPs) in TGFBR1 and TGFBR2 genes were selected on the basis of genetic data obtained from HapMap. PCR-restriction fragment length polymorphism (PCR-RFLP) was performed to identify TGFBR1 and TGFBR2 gene polymorphisms and analyze genotype distribution and allele frequency. Logistic regression analysis was conducted to estimate the risk factors for hypospadias. No significant difference was found concerning the genotype and allele frequencies of TGFBR1 rs4743325 polymorphism between the case and control groups. However, genotype and allele frequencies of TGFBR2 rs6785358 in the case group were significantly different in contrast with those in the control group. Patients carrying the G allele of TGFBR2 rs6785358 polymorphism exhibited a higher risk of hypospadias compared with the patients carrying the A allele (P<0.05). The TGFBR2 rs6785358 genotype was found to be significantly related to abnormal pregnancy and preterm birth (both P<0.05). The frequency of TGFBR2 rs6785358 GG genotype exhibited significant differences amongst patients suffering from four different pathological types of hypospadias. Logistic regression analysis revealed that preterm birth, abnormal pregnancy, and TGFBR2 rs6785358 were the independent risk factors for hypospadias. Our study provides evidence that TGFBR2 rs6785358 polymorphism might be associated with the risk of hypospadias.


Serotonin-Mediated Cardiac Analgesia via Ah-Type Baroreceptor Activation Contributes to Silent Angina and Asymptomatic Infarction.

  • Xin Wen‎ et al.
  • Neuroscience‎
  • 2019‎

Silent angina is a critical phenomenon in the clinic and is more commonly associated with women patients suffering from myocardial ischemia. Its underlying cause remains mysterious in medicine. With our recent discovery of female-specific Ah-type baroreceptor neurons (BRNs), we hypothesize that cardiac analgesia is due to the direct activation of Ah-type BRNs by elevated levels of circulating serotonin (5-HT) myocardial infarction (MI) patients. Electromyography and the tail-flick reflex were assessed in control and MI-model rats to evaluate 5-HT-mediated BP regulation as well as peripheral and cardiac nociception. 5-HT or a 5-HT receptor agonist was microinjected into the nodose ganglion to confirm the involvement of the afferent pathway of the baroreflex arc. An inward current was observed in identified BRNs by applying a whole-cell patch-clamp technique in conjunction with qRT-PCR to verify the afferent-specific action of 5-HT and the expression of 5-HT receptors. Although the tail-flick reflex and mean arterial pressure were dramatically reduced in female MI rats with elevated serum 5-HT, intrapericardial capsaicin-evoked muscular discharges were significantly inhibited in comparing with those of males, which were mimicked by microinjection of 5-HT or SR57227A into the nodose. Ah-type BRNs displayed robust inward currents at lower concentrations of 5-HT than the C-type or the A-type, with significantly increased expression and cellular distribution of 5-HT3AR but not 5-HT3BR compared to the A- and C-types. Activation of 5-HT3AR in Ah-type BRNs by 5-HT contributes significantly to cardiac analgesia, which may suggest the pathogenic condition that silent angina occurs mainly in female patients.


Association between plasma macrophage migration inhibitor factor and deep vein thrombosis in patients with spinal cord injuries.

  • Dong-Mei Wu‎ et al.
  • Aging‎
  • 2019‎

The patients with spinal cord injury (SCI) suffered significantly higher risk of deep vein thrombosis (DVT) than normal population. The aim was to assess the clinical significance of macrophage migration inhibitory factor (MIF) as the risk factor for DVT in acute SCI patients. 207 Chinese patients were enrolled in this study, including thirty-nine (39) patients (18.8 %; 95 %CI: 13.5 %-24.2 %) diagnosed as DVT at the follow-up of 1 month. Nine (9) of the 39 patients (23.1%) were suspected of thrombosis before the screening. The MIF levels in plasma of DVT patients were significantly higher than DVT-free patients. The risks of DVT would be increased by 11 % (OR unadjusted: 1.11; 95% CI, 1.06-1.17, P<0.001) and 8 % (OR adjusted: 1.08; 1.03-1.14, P=0.001), for each additional 1 ng/ml of MIF level. Furthermore, after MIF was combined with established risk factors, area under the receiver operating characteristic curve (standard error) was increased from 0.82(0.035) to 0.85(0.030). The results showed the potential association between the high MIF levels in plasma and elevated DVT risk in SCI patients, which may assist on early intervention.


iTRAQ-based quantitative proteomic analysis of Takifugu fasciatus liver in response to low-temperature stress.

  • Xin Wen‎ et al.
  • Journal of proteomics‎
  • 2019‎

Low temperatures profoundly influence the physiological and behavioural processes of ectotherms, especially teleosts, which have made them the subjects of strong interest over time. However, the characteristics of fish cold-tolerance at the protein level remain unclear. Therefore, to shed further light on the molecular mechanisms of low temperature adaptation in fish, we conducted quantitative proteomics on the T. fasciatus liver using iTRAQ. Comparing the proteomic profiles of the T. fasciatus liver at 12 °C and 26 °C, a total of 3741 proteins were identified, and 160 were differentially abundant proteins (DAPs). Among the DAPs, the most significant changes were noted in proteins involved in oxidative stress (nine proteins), mitochondrial enzymes (eleven proteins) and signal transduction (thirteen proteins). The KEGG enrichment analysis indicated significant enhancement of D-arginine and D-ornithine metabolism, MAPK signalling, Wnt signalling and Gap junction pathway. Subsequently, three significantly up-regulated proteins (CIRB, HSP90 and GST) and two significantly down-regulated proteins (FLNB and A2ML1) were validated with parallel reaction monitoring (PRM) assays. Furthermore, the changes in abundance of proteins that are involved in oxidative stress, mitochondrial enzymes and signal transduction were validated at the transcriptional level with qPCR. These verification results show that the experimental data of iTRAQ are reliable. Our results not only deepen the understanding of the mechanisms underlying low-temperature tolerance in fish, but they also may contribute to the enhancement of cold tolerance during its breeding process. SIGNIFICANCE OF THE STUDY: The study focused on a comparative quantitative proteomics analysis of the T. fasciatus liver in response to low temperatures using iTRAQ, which has not yet been reported in the literatures. The results showed that the effect of low temperature on T. fasciatus is significant, including a detoxification of metabolic by-products and oxidative stress, an activation of the mitochondrial enzyme to strengthen energy metabolism, and a negative effect on signal transduction, which result in dysfunction or suboptimal performance. These low-temperature-related changes in the liver proteome of T. fasciatus can facilitate the understanding of the low temperature-related response that takes place in similar conditions in the liver and may contribute to the breeding of cold-resistant strains.


Microbial Conversion of Protopanaxadiol-Type Ginsenosides by the Edible and Medicinal Mushroom Schizophyllum commune: A Green Biotransformation Strategy.

  • Zhi Liu‎ et al.
  • ACS omega‎
  • 2019‎

Previous studies have shown that many kinds of microorganisms, including bacteria, yeasts, and filamentous fungi, can convert parent ginsenosides into minor ginsenosides. However, most microorganisms used for ginsenoside transformations may not be safe for food consumption and drug development. In this study, 24 edible and medicinal mushrooms were screened by high-performance liquid chromatography analyses for their ability to microbiologically transform protopanaxadiol (PPD)-type ginsenosides. We observed that the degradation of ginsenosides by Schizophyllum commune was inhibited by high concentrations of sugar in the culture medium. However, the inhibition was avoided by maintaining sugar concentration below 15 g L-1. S. commune showed a strong ability to convert PPD-type ginsenosides (Rb1, Rc, Rb2, and Rd) into minor ginsenosides (F2, C-O, C-Y, C-Mc1, C-Mc, and C-K). The production and bioconversion rates of minor ginsenosides were significantly higher than those previously reported by food microorganisms. The fermentation process is efficient, nontoxic, eco-friendly, and economical, and the required biotransformation systems are readily available. This is the first report about the biotransformation of major ginsenosides into minor ginsenosides through fermentation by edible and medicinal mushrooms. Our results provide a green biodegradation strategy in transformation of ginsenosides using edible and medicinal mushrooms.


MicroRNA-433 inhibits oral squamous cell carcinoma cells by targeting FAK.

  • Yong-Jian Wang‎ et al.
  • Oncotarget‎
  • 2017‎

We investigated the involvement of microRNA-433 (miR-433) in the proliferation, migration, and invasiveness of oral squamous cell carcinoma (OSCC). Totally 108 OSCC tissues and adjacent normal tissues from patients with OSCC were collected. Also, transplanted tumor formation experiment in nude mice was conducted to verify the effect of miR-433 and FAK on subcutaneous transplanted tumor. The CD44+ stem cell from SCC-9 were collected and assigned into the blank, miR-433 mimics, mimics control, miR-433 inhibitors, inhibitors control, siFAK and miR-433 inhibitors + siFAK groups. The qRT-PCR and western blotting were used to detect miR-433, FAK, ERK, MEK, pERK and pMEK after transfection. Flow cytometry, MTT assay, scratch test and Transwell assay were performed to determine the cell proportion, growth, migration and invasion of SCC-9 cells. In cell line SCC-9, expression of CD133, Oct-4, and BIM-1 was greater in CD44+ cells than CD44- cells, indicating that CD44+ cells had characteristics of tumor stem cells. Expression of FAK, ERK, MEK, p-ERK and p-MEK was decreased in tumor tissues from the CD44-, miR-433, and siFAK groups. Expression of MiR-433 mRNA was elevated, while levels of FAK, ERK, MEK, p-ERK, and p-MEK mRNA were all decreased in the miR-433 mimics group. In the miR-433 mimics and siFAK groups, cell proliferation, migration, and invasion were all decreased, while the opposite trends were seen in the miR-433 inhibitor group. These results indicate that miR-433 downregulates FAK through the ERK/MAPK signaling pathway to inhibit the proliferation, migration, and invasiveness of SCC-9 OSCC cells.


Aliskiren therapy in hypertension and cardiovascular disease: a systematic review and a meta-analysis.

  • Shufang Fu‎ et al.
  • Oncotarget‎
  • 2017‎

The efficacy and safety of aliskiren combination therapy with angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) in patients with hypertension and cardiovascular disease remains attractive attention. We searched the Cochrane Central Register, the Clinical Trials Registry, EMBASE, MEDLINE and PubMed for relevant literatures up to January 2017. A total of 13 randomized controlled trials (RCTs) with 12222 patients were included in this study, and the combined results indicated that aliskiren in combination therapy with ACEIs or ARBs had remarkable effects in reducing systolic blood pressure (SBP) [weighted mean differences (WMD), -4.20; 95% confidential intervals (CI) -5.44 to -2.97; I2 , 29.7%] and diastolic blood pressure (DBP: WMD, -2.09; 95% CI -2.90 to -1.27; I2 , 0%) when compared with ACEIs or ARBs monotherapy, but with significantly increased the risk of hyperkalaemia [relative risk (RR), 1.45; 95% CI 1.28 to 1.64; I2 ,10.6 %] and kidney injury ( RR, 1.92; 95% CI 1.14 to 3.21; I2 , 0%). Besides, there was no significant difference in the incidence of major cardiovascular events (RR, 0.95; 95% CI 0.89 to 1.02; I2 , 0%) between the combined therapy and ACEIs or ARBs monotherapy. In conclusion, this meta-analysis demonstrated that aliskiren in combination therapy with ACEs/ARBs could control BP effectively, but is associated with increasing risks of hyperkalaemia and kidney injury, and have no benefit in preventing of major cardiovascular events.


Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes.

  • Peng Xiao‎ et al.
  • Cell‎
  • 2021‎

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Signal Decoding for Glutamate Modulating Egg Laying Oppositely in Caenorhabditis elegans under Varied Environmental Conditions.

  • Xin Wen‎ et al.
  • iScience‎
  • 2020‎

Animals' ability to sense environmental cues and to integrate this information to control fecundity is vital for continuing the species lineage. In this study, we observed that the sensory neurons Amphid neuron (ASHs and ADLs) differentially regulate egg-laying behavior in Caenorhabditis elegans under varied environmental conditions via distinct neuronal circuits. Under standard culture conditions, ASHs tonically release a small amount of glutamate and inhibit Hermaphrodite specific motor neuron (HSN) activities and egg laying via a highly sensitive Glutamate receptor (GLR)-5 receptor. In contrast, under Cu2+ stimulation, ASHs and ADLs may release a large amount of glutamate and inhibit Amphid interneuron (AIA) interneurons via low-sensitivity Glutamate-gated chloride channel (GLC)-3 receptor, thus removing the inhibitory roles of AIAs on HSN activity and egg laying. However, directly measuring the amount of glutamate released by sensory neurons under different conditions and assaying the binding kinetics of receptors with the neurotransmitter are still required to support this study directly.


Ameliorating effect of quercetin on epilepsy by inhibition of inflammation in glial cells.

  • Dongmei Wu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2020‎

Epilepsy is a prevalent neurological disorder and it is a significant health risk, affecting >50 million people worldwide. The development of novel and appropriate strategies is required for ameliorating the progression and/or limiting the detrimental consequences of epilepsy. In the current study, kainic acid (KA), a neurotoxin, was used to induce seizures in mice. The flavonoid quercetin has recently been reported to have neuroprotective effects. Therefore, the effects of quercetin on KA-induced epilepsy and the potential underlying molecular mechanisms were examined. It was noted that quercetin attenuated the KA-induced seizure score and proinflammatory cytokine production, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and activation of nuclear factor κB (NF-κB) in mice. Quercetin attenuated KA-induced proinflammatory cytokine (TNF-α and IL-1β) release from microglia cells, as well as activation of NF-κB and ionized calcium binding adapter molecule 1 in microglia cells. Therefore, quercetin inhibited KA-induced epilepsy by microglia cell inactivation and the production of NF-κB, TNF-α and IL-1β.


Synthesis of Palladium Nanodendrites Using a Mixture of Cationic and Anionic Surfactants.

  • Xin Wen‎ et al.
  • Langmuir : the ACS journal of surfaces and colloids‎
  • 2020‎

Surfactants are used widely to control the synthesis of shaped noble-metal nanoparticles. In this work, a mixture of hexadecyltrimethylammonium bromide (CTAB), a cationic surfactant; sodium oleate (NaOL), an anionic surfactant; palladium chloride; and a reducing agent were used in the seed-mediated synthesis of palladium nanoparticles. By controlling the surfactant mixture ratio, we initially discovered that palladium nanodendrites with narrow size distribution were formed instead of the traditional nanocubes, synthesized with only CTAB. In order to investigate the optimal ratio to produce Pd nanodendrites with a high yield and narrow size distribution, samples synthesized with multiple molar ratios of the two surfactants were prepared and studied by transmission electron microscopy, dynamic light scattering, conductance, and ultraviolet-visible spectroscopy. We propose that the addition of NaOL alters the arrangement of surfactants on the Pd seed surface, leading to a new pattern of growth and aggregation. By studying the nanodendrite growth over time, we identified the reduction period of Pd2+ ions and the formation period of the nanodendrites. Our further experiments, including the replacement of CTAB with hexadecyltrimethylammonium chloride (CTAC) and the replacement of NaOL with sodium stearate, showed that CTA+ ions in CTAB and OL- ions in NaOL play the main roles in the formation of nanodendrites. The formation of palladium nanodendrites was robust and achieved with a range of temperatures, pH and mixing speeds.


LncRNA SNHG15 acts as a ceRNA to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma.

  • Dong-Mei Wu‎ et al.
  • Cell death & disease‎
  • 2018‎

Over the past decade, lncRNAs have been widely reported in human malignant tumors, including papillary thyroid carcinoma. LncRNA SNHG15 has been validated to be a tumor facilitator in several types of malignancies. The present study focused on the biological role of SNHG15 in papillary thyroid carcinoma. Based on the result of qPCR analysis, we identified the strong expression of SNHG15 in human papillary thyroid carcinoma tissues and cell lines. Moreover, Kaplan-Meier method was utilized to analyze the internal relevance between SNHG15 expression and overall survival rate of patients with papillary thyroid carcinoma. Loss-of-function assays were designed and conducted to determine the inhibitory effects of silenced SNHG15 on the cell growth and migration in papillary thyroid carcinoma. The mechanical investigation indicated that SNHG15 upregulated YAP1 by sponging miR-200a-3p. Moreover, results of gain-of-function assays validated the anti-oncogenic function of miR-200a-3p in papillary thyroid carcinoma. Finally, results of rescue assays validated the function of SNHG15-miR-200a-3p-YAP1 axis in papillary thyroid carcinoma. YAP1 is known as an oncogene and a core factor of Hippo pathway. Here, we demonstrated that SNHG15 inactivated Hippo signaling pathway in papillary thyroid carcinoma. In summary, our findings demonstrated that SNHG15 serves as a competitively endogenous RNA (ceRNA) to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma.


LncRNA H19 promotes triple-negative breast cancer cells invasion and metastasis through the p53/TNFAIP8 pathway.

  • Yang Li‎ et al.
  • Cancer cell international‎
  • 2020‎

Long non-coding RNA H19 (lncRNA H19) has been implicated in tumorigenesis and metastasis of breast cancer through regulating epithelial to mesenchymal transition (EMT); however, the underlying mechanisms remain elusive.


Construction of an RNA-Binding Protein-Related Prognostic Model for Pancreatic Adenocarcinoma Based on TCGA and GTEx Databases.

  • Xin Wen‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Background: Recently, RNA-binding proteins (RBPs) were reported to interact with target mRNA to regulate gene posttranscriptional expression, and RBP-mediated RNA modification can regulate the expression and function of proto-oncogenes and tumor suppressor genes. We systematically analyzed the expression of RBPs in pancreatic adenocarcinoma (PAAD) and constructed an RBP-associated prognostic risk model. Methods: Gene expression data of normal pancreatic samples as well as PAAD samples were downloaded from TCGA-PAAD and GTEx databases. Wilcoxon test and univariate Cox analysis were, respectively, applied to screen differential expression RBPs (DE-RBPs) and prognostic-associated RBPs (pRBPs). Functional enrichment was analyzed by GO, KEGG, and GSEA. Protein-protein interaction (PPI) network was constructed by STRING online database. Modeling RBPs were selected by multivariate Cox analysis. Kaplan-Meier survival and Cox analysis were applied to evaluate the effects of risk score on the overall survival of PAAD patients. ROC curves and validation cohort were applied to verify the accuracy of the model. Nomogram was applied for predicting 1-, 3-, and 5-year overall survival (OS) of PAAD patients. At last, modeling RBPs were further analyzed to explore their differential expression, prognostic value, as well as enrichment pathways in PAAD. Results: RBPs (453) were differentially expressed in normal and tumor samples, besides, 28 of which were prognostic associated. DE-RBPs (453) are functionally associated with ribosome, ribonuclease, spliceosome, etc. Eight RBPs (PABPC1, PRPF6, OAS1, RBM5, LSM12, IPO7, FXR1, and RBM6) were identified to construct a prognostic risk model. Higher risk score not only predicted poor prognosis but also was an independent poor prognostic indicator, which was verified by ROC curves and validation cohort. Eight modeling RBPs were confirmed to be significantly differentially expressed between normal and tumor samples from RNA and protein level. Besides, all of eight RBPs were related with overall survival of PAAD patients. Conclusions: We successfully constructed an RBP-associated prognostic risk model in PAAD, which has a potential clinical application prospect.


Obesity-associated up-regulation of lipocalin 2 protects gastric mucosa cells from apoptotic cell death by reducing endoplasmic reticulum stress.

  • Xin Wen‎ et al.
  • Cell death & disease‎
  • 2021‎

Gastric mucosal injury is a less well known complication of obesity. Its mechanism remains to be further elucidated. Here, we explored the protective role of lipocalin 2 (LCN2) against endoplasmic reticulum stress and cell apoptosis in gastric mucosa in patients and mice with obesity. Through molecular and genetic analyses in clinical species, LCN2 secreted by parietal cells expression is elevated in obese. Immunofluorescence, TUNEL, and colorimetry results show that a more significant upregulation of pro-inflammatory factors and increased amount of apoptotic cells in gastric tissue sections in obese groups. Loss- and gain-of-function experiments in gastric epithelial cells demonstrate that increased LCN2 protected against obesity associated gastric injury by inhibiting apoptosis and improving inflammatory state. In addition, this protective effect was mediated by repressing ER stress. Our findings identify LCN2 as a gastric hormone could be a compensatory protective factor against gastric injury in obese.


UPLC-MS-Based Serum Metabolomics Reveals Potential Biomarkers of Ang II-Induced Hypertension in Mice.

  • Shaying Yang‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2021‎

Hypertension is caused by polygenic inheritance and the interaction of various environmental factors. Abnormal function of the renin-angiotensin-aldosterone system (RAAS) is closely associated with changes in blood pressure. As an essential factor in the RAAS, angiotensin II (Ang II) contributes to vasoconstriction and inflammatory responses. However, the effects of overproduction of Ang II on the whole body-metabolism have been unclear. In this study, we established a hypertensive mouse model by micro-osmotic pump perfusion of Ang II, and the maximum systolic blood pressure reached 140 mmHg after 2 weeks. By ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, the metabolites in the serum of hypertensive model and control mice were analyzed. Partial least squares discriminant analysis (PLS-DA) in both positive and negative ionization modes showed clear separation of the two groups. Perfusion of Ang II induced perturbations of multiple metabolic pathways in mice, such as steroid hormone biosynthesis and galactose metabolism. Tandem mass spectrometry revealed 40 metabolite markers with potential diagnostic value for hypertension. Our data indicate that non-targeted metabolomics can reveal biochemical pathways associated with Ang II-induced hypertension. Although researches about the clinical use of these metabolites as potential biomarkers in hypertension is still needed, the current study improves the understanding of systemic metabolic response to sustained release of Ang II in hypertensive mice, providing a new panel of biomarkers that may be used to predict blood pressure fluctuations in the early stages of hypertension.


Clathrin Heavy Chain 1 Plays Essential Roles During Oocyte Meiotic Spindle Formation and Early Embryonic Development in Sheep.

  • Zhe Han‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

As a major protein of the polyhedral coat of coated pits and vesicles, clathrin molecules have been shown to play a stabilization role for kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridges. Clathrin heavy chain 1 (CLTC), the basic subunit of the clathrin coat, plays vital roles in both spindle assembly and chromosome congression during somatic-cell mitosis. However, its function in oocyte meiotic maturation and early embryo development in mammals, especially in domesticated animals, has not been fully investigated. In this study, the expression profiles and functional roles of CLTC in sheep oocytes were investigated. Our results showed that the expression of CLTC was maintained at a high level from the germinal vesicle (GV) stage to metaphase II stage and that CLTC was distributed diffusely in the cytoplasm of cells at interphase, from the GV stage to the blastocyst stage. After GV breakdown (GVBD), CLTC co-localized with beta-tubulin during metaphase. Oocyte treatments with taxol, nocodazole, or cold did not affect CLTC expression levels but led to disorders of its distribution. Functional impairment of CLTC by specific morpholino injections in GV-stage oocytes led to disruptions in spindle assembly and chromosomal alignment, accompanied by impaired first polar body (PB1) emissions. In addition, knockdown of CLTC before parthenogenetic activation disrupted spindle formation and impaired early embryo development. Taken together, the results demonstrate that CLTC plays a vital role in sheep oocyte maturation via the regulation of spindle dynamics and an essential role during early embryo development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: