Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Establishment of a Drosophila AD model.

  • Xingjun Wang‎ et al.
  • Journal of biological methods‎
  • 2016‎

Alzheimer's disease (AD) is the most common form of dementia that affects people's health greatly. Though amyloid precursor protein (APP) has been implicated in the pathogenesis of AD, the exact role of APP and its underlying mechanism in AD progression have remained largely elusive. Drosophila melanogaster has been extensively used as a model organism to study a wide range of human diseases including AD. In this protocol, we expressed full length human APP in the Drosophila nervous system and examined its effect on locomotion and choice ability. We found that expression of APP produced locomotion defects in larvae as measured by plate crawling ability assay (PCA), and in adult flies as monitored by plate cycling ability assay (CLA). In addition, expression of APP results in male courtship choice (MCC) defect, since wild-type males court preferentially toward young virgin females over old ones, while APP-expressing males failed to show this preference. This protocol enables us to screen for novel AD candidate genes as well as therapeutic compounds to ameliorate the disease.


Hydrolysis-resistant and stress-buffering bifunctional polyurethane adhesive for durable dental composite restoration.

  • Jiahui Zhang‎ et al.
  • Royal Society open science‎
  • 2020‎

A new elastic polyurethane (PU) adhesive was reported in this study to improve the stability and durability of the dental adhesion interface. A polyurethane oligomer was synthesized by the solution polymerization method, and a diluent and solvent were added to prepare PU adhesives. The water sorption, water solubility, contact angle, thermal stability, degree of conversion and mechanical properties of the PU adhesives were evaluated. Experimental applications for tooth restoration (microtensile bond strength and microleakage) were also performed, and cytotoxicity test was carried out. The water sorption and solubility of the PU adhesives were significantly lower than those of three commercial adhesives. The microtensile bond strength of the PU adhesives was improved after thermocycling test, and the extent of microleakage was diminished when compared with that of commercial adhesives. Biocompatibility testing demonstrated that the PU adhesive was non-toxic to L929 fibroblasts. This study shows the ability of PU adhesive to improve the stability and durability of the dental adhesion interface and may refocus the attention of scientists from rigid bonding to flexible bonding for dental adhesion, and it sheds light on a new strategy for the stable and durable bonding interface of dentine adhesives.


Moderate grazing increased alpine meadow soils bacterial abundance and diversity index on the Tibetan Plateau.

  • Yangong Du‎ et al.
  • Ecology and evolution‎
  • 2020‎

The response of grassland soil bacterial community characteristics to different grazing intensities is central ecological topics. However, the underlying mechanisms between bacterial abundance, diversity index, and grazing intensity remain unclear. We measured alpine meadow soil bacterial gene richness and diversity index under four grazing intensities using 16S rDNA sequence analysis on the Tibetan Plateau. The results suggest that extreme grazing significantly decreased alpine meadow both bacterial gene abundance and diversity index (p < .05). The lowest operational taxonomic unit numbers were 3,012 ± 447 copies under heavy grazing in the growing season. It was significantly lower than heavy grazing with approximately 3,958 ± 119 copies (p < .05). The Shannon index for medium and high grazing grassland bacterial diversity was slightly higher than for light grazing in the growing season. Furthermore, the lowest index was approximately 9.20 ± 0.50 for extreme grazing of grassland in the growing season. The average bacterial gene abundance and diversity index in the dormancy period were slightly higher than that in the growing season. Soil bulk density, pH, ammonium, and nitrate nitrogen were the main positive factors driving grazed grassland bacterial communities. Our study provides insight into the response of alpine meadows to grazing intensity, demonstrating that moderate grazing increases bacterial community diversity in grazed grasslands.


SbbR/SbbA, an Important ArpA/AfsA-Like System, Regulates Milbemycin Production in Streptomyces bingchenggensis.

  • Hairong He‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Milbemycins, a group of 16-membered macrolide antibiotics, are used widely as insecticides and anthelmintics. Previously, a limited understanding of the transcriptional regulation of milbemycin biosynthesis has hampered efforts to enhance antibiotic production by engineering of regulatory genes. Here, a novel ArpA/AfsA-type system, SbbR/SbbA (SBI_08928/SBI_08929), has been identified to be involved in regulating milbemycin biosynthesis in the industrial strain S. bingchenggensis BC04. Inactivation of sbbR in BC04 resulted in markedly decreased production of milbemycin, while deletion of sbbA enhanced milbemycin production. Electrophoresis mobility shift assays (EMSAs) and DNase I footprinting studies showed that SbbR has a specific DNA-binding activity for the promoters of milR (the cluster-situated activator gene for milbemycin production) and the bidirectionally organized genes sbbR and sbbA. Transcriptional analysis suggested that SbbR directly activates the transcription of milR, while represses its own transcription and that of sbbA. Moreover, 11 novel targets of SbbR were additionally found, including seven regulatory genes located in secondary metabolite biosynthetic gene clusters (e.g., sbi_08420, sbi_08432, sbi_09158, sbi_00827, sbi_01376, sbi_09325, and sig24sbh ) and four well-known global regulatory genes (e.g., glnRsbh , wblAsbh , atrAsbh , and mtrA/Bsbh ). These data suggest that SbbR is not only a direct activator of milbemycin production, but also a pleiotropic regulator that controls the expression of other cluster-situated regulatory genes and global regulatory genes. Overall, this study reveals the upper-layer regulatory system that controls milbemycin biosynthesis, which will not only expand our understanding of the complex regulation in milbemycin biosynthesis, but also provide a basis for an approach to improve milbemycin production via genetic manipulation of SbbR/SbbA system.


Design and experimental study of a novel 7-DOF manipulator for transrectal ultrasound probe.

  • Yongde Zhang‎ et al.
  • Science progress‎
  • 2020‎

Traditional hand-held ultrasound probe has some limitations in prostate biopsy. Improving the localization and accuracy of ultrasound probe will increase the detection rate of prostate cancer while biopsy techniques remain unchanged. This paper designs a manipulator for transrectal ultrasound probe, which assists doctors in performing prostate biopsy and improves the efficiency and accuracy of biopsy procedure. The ultrasound probe manipulator includes a position adjustment module that can lock four joints at the same time. It reduces operating time and improves the stability of the mechanism. We use the attitude adjustment module designed by double parallelogram RCM mechanism, the ultrasound probe can realize centering and prevent its radial motion. The self-weight balance design helps doctors operate ultrasound probe without weight. Using MATLAB to analyze the manipulator, the results show that the workspace of the mechanism can meet the biopsy requirements. And simulate the centering effect of the ultrasound probe when the attitude is adjusted at different feeding distances, the results show that the ultrasound probe is centering stability. Finally, the centering and joint interlocking tests of the physical prototype are completed. In this paper, a 7-DOF manipulator for transrectal ultrasound probe is designed. The mechanism is analyzed for kinematics, workspace analysis, simulation of centering effects, development of a physical prototype and related experimental research. The results show that the surgical demand workspace is located inside the reachable workspace of the mechanism and the joint locking of the manipulator is reliable.


APLP2 Modulates JNK-Dependent Cell Migration in Drosophila.

  • Xingjun Wang‎ et al.
  • BioMed research international‎
  • 2018‎

Amyloid precursor-like protein 2 (APLP2) belongs to the APP family and is widely expressed in human cells. Though previous studies have suggested a role of APLP2 in cancer progression, the exact role of APLP2 in cell migration remains elusive. Here in this report, we show that ectopic expression of APLP2 in Drosophila induces cell migration which is mediated by JNK signaling, as loss of JNK suppresses while gain of JNK enhances such phenotype. APLP2 is able to activate JNK signaling by phosphorylation of JNK, which triggers the expression of matrix metalloproteinase MMP1 required for basement membranes degradation to promote cell migration. The data presented here unraveled an in vivo role of APLP2 in JNK-mediated cell migration.


Slik maintains tissue homeostasis by preventing JNK-mediated apoptosis.

  • Chenglin Li‎ et al.
  • Cell division‎
  • 2023‎

The c-Jun N-terminal kinase (JNK) pathway is an evolutionarily conserved regulator of cell death, which is essential for coordinating tissue homeostasis. In this study, we have characterized the Drosophila Ste20-like kinase Slik as a novel modulator of JNK pathway-mediated apoptotic cell death.


A coherent FOXO3-SNAI2 feed-forward loop in autophagy.

  • Xiaowei Guo‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

SignificanceUnderstanding autophagy regulation is instrumental in developing therapeutic interventions for autophagy-associated disease. Here, we identified SNAI2 as a regulator of autophagy from a genome-wide screen in HeLa cells. Upon energy stress, SNAI2 is transcriptionally activated by FOXO3 and interacts with FOXO3 to form a feed-forward regulatory loop to reinforce the expression of autophagy genes. Of note, SNAI2-increased FOXO3-DNA binding abrogates CRM1-dependent FOXO3 nuclear export, illuminating a pivotal role of DNA in the nuclear retention of nucleocytoplasmic shuttling proteins. Moreover, a dFoxO-Snail feed-forward loop regulates both autophagy and cell size in Drosophila, suggesting this evolutionarily conserved regulatory loop is engaged in more physiological activities.


Transcription factor Zhx2 restricts NK cell maturation and suppresses their antitumor immunity.

  • Siyu Tan‎ et al.
  • The Journal of experimental medicine‎
  • 2021‎

The maturation and functional competence of natural killer (NK) cells is a tightly controlled process that relies on transcription factors (TFs). Here, we identify transcriptional repressor zinc fingers and homeoboxes 2 (Zhx2) as a novel regulator that restricts NK cell maturation and function. Mice with Zhx2 conditional deletion in NK cells (Zhx2Δ/Δ) showed accumulation of matured NK cells. Loss of Zhx2 enhanced NK cell survival and NK cell response to IL-15. Transcriptomic analysis revealed Zeb2, a key TF in NK cell terminal maturation, as a direct downstream target of Zhx2. Therapeutically, transfer of Zhx2-deficient NK cells resulted in inhibition of tumor growth and metastasis in different murine models. Our findings collectively unmask a previously unrecognized role of Zhx2 as a novel negative regulator in NK cell maturation and highlight its therapeutic potential as a promising strategy to enhance NK cell-mediated tumor surveillance.


Characterization of Streptomyces sporangiiformans sp. nov., a Novel Soil Actinomycete with Antibacterial Activity against Ralstonia solanacearum.

  • Junwei Zhao‎ et al.
  • Microorganisms‎
  • 2019‎

Ralstonia solanacearum is a major phytopathogenic bacterium that attacks many crops and other plants around the world. In this study, a novel actinomycete, designated strain NEAU-SSA 1T, which exhibited antibacterial activity against Ralstonia solanacearum, was isolated from soil collected from Mount Song and characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics of the strain coincided with those of the genus Streptomyces. The 16S rRNA gene sequence analysis showed that the isolate was most closely related to Streptomyces aureoverticillatus JCM 4347T (97.9%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain formed a cluster with Streptomyces vastus JCM4524T (97.4%), S. cinereus DSM43033T (97.2%), S. xiangluensis NEAU-LA29T (97.1%) and S. flaveus JCM3035T (97.1%). The cell wall contained LL-diaminopimelic acid and the whole-cell hydrolysates were ribose, mannose and galactose. The polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), hydroxy-phosphatidylethanolamine (OH-PE), phosphatidylinositol (PI), two phosphatidylinositol mannosides (PIMs) and an unidentified phospholipid (PL). The menaquinones were MK-9(H4), MK-9(H6), and MK-9(H8). The major fatty acids were iso-C17:0, C16:0 and C17:1 ω9c. The DNA G+C content was 69.9 mol %. However, multilocus sequence analysis (MLSA) based on five other house-keeping genes (atpD, gyrB, recA, rpoB, and trpB), DNA-DNA relatedness, and physiological and biochemical data showed that the strain could be distinguished from its closest relatives. Therefore, it is proposed that strain NEAU-SSA 1T should be classified as representatives of a novel species of the genus Streptomyces, for which the name Streptomyces sporangiiformans sp. nov. is proposed. The type strain is NEAU-SSA 1T (=CCTCC AA 2017028T = DSM 105692T).


Dependency-based long short term memory network for drug-drug interaction extraction.

  • Wei Wang‎ et al.
  • BMC bioinformatics‎
  • 2017‎

Drug-drug interaction extraction (DDI) needs assistance from automated methods to address the explosively increasing biomedical texts. In recent years, deep neural network based models have been developed to address such needs and they have made significant progress in relation identification.


Snail modulates JNK-mediated cell death in Drosophila.

  • Chenxi Wu‎ et al.
  • Cell death & disease‎
  • 2019‎

Cell death plays a pivotal role in animal development and tissue homeostasis. Dysregulation of this process is associated with a wide variety of human diseases, including developmental and immunological disorders, neurodegenerative diseases and tumors. While the fundamental role of JNK pathway in cell death has been extensively studied, its down-stream regulators and the underlying mechanisms remain largely elusive. From a Drosophila genetic screen, we identified Snail (Sna), a Zinc-finger transcription factor, as a novel modulator of ectopic Egr-induced JNK-mediated cell death. In addition, sna is essential for the physiological function of JNK signaling in development. Our genetic epistasis data suggest that Sna acts downstream of JNK to promote cell death. Mechanistically, JNK signaling triggers dFoxO-dependent transcriptional activation of sna. Thus, our findings not only reveal a novel function and the underlying mechanism of Sna in modulating JNK-mediated cell death, but also provide a potential drug target and therapeutic strategies for JNK signaling-related diseases.


Community Structures and Antifungal Activity of Root-Associated Endophytic Actinobacteria of Healthy and Diseased Soybean.

  • Chongxi Liu‎ et al.
  • Microorganisms‎
  • 2019‎

The present study was conducted to examine the influence of a pathogen Sclerotinia sclerotiorum (Lib.) de Bary on the actinobacterial community associated with the soybean roots. A total of 70 endophytic actinobacteria were isolated from the surface-sterilized roots of either healthy or diseased soybeans, and they were distributed under 14 genera. Some rare genera, including Rhodococcus, Kribbella, Glycomyces, Saccharothrix, Streptosporangium and Cellulosimicrobium, were endemic to the diseased samples, and the actinobacterial community was more diverse in the diseased samples compared with that in the heathy samples. Culture-independent analysis of root-associated actinobacterial community using the high-throughput sequencing approach also showed similar results. Four Streptomyces strains that were significantly abundant in the diseased samples exhibited strong antagonistic activity with the inhibition percentage of 54.1-87.6%. A bioactivity-guided approach was then employed to isolate and determine the chemical identity of antifungal constituents derived from the four strains. One new maremycin analogue, together with eight known compounds, were detected. All compounds showed significantly antifungal activity against S. sclerotiorum with the 50% inhibition (EC50) values of 49.14-0.21 mg/L. The higher actinobacterial diversity and more antifungal strains associated with roots of diseased plants indicate a possible role of the root-associated actinobacteria in natural defense against phytopathogens. Furthermore, these results also suggest that the root of diseased plant may be a potential reservoir of actinobacteria producing new agroactive compounds.


MicroRNA-503 promotes angiotensin II-induced cardiac fibrosis by targeting Apelin-13.

  • Yuhong Zhou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2016‎

Cardiac fibrosis is a major cause of heart failure. MicroRNAs (miRs) are important epigenetic regulators of cardiac function and cardiovascular diseases, including cardiac fibrosis. This study aimed to explore the role of miR-503 and its mechanisms in regulating cardiac fibrosis. miR-503 was found up-regulated in the mouse LV tissues subjected to transverse aortic constriction (TAC) and in neonatal cardiac fibroblasts (CFs) cultured with Angiotension II. The role of miR-503 in regulating CF cell proliferation and/or collagen production in mice neonatal CFs were determined using an MTT assay and RT-PCR respectively. Forced expression of miR-503 increased the cellular proliferation and collagen production in mice neonatal CFs. The effects were abrogated by cotransfection with AMO-503 (a specific inhibitor of miR-503). Injection of antagomiR-503 elevated cardiac function and inhibited the expression of connective tissue growth factor (CTGF) and transforming growth factor (TGF)-β in the TAC mice. Additional analysis revealed that Apelin-13 is a direct target of miR-503, as the overexpression of miR-503 decreased the protein and mRNA expression levels of Apelin-13. In the CFs with pre-treatment of AngII, we transfected AMO-503 into the cells treated with siRNA-APLN. siRNA-APLN abolished the effects of AMO-503 on the production of collagen I and III and the expression of TGF-β and CTGF. Furthermore, pre-treatment of CFs with Apelin-13 (1-100 nmol/l) inhibited angiotensin II-mediated collagen production and activation of CTGF and TGF-β. So we conclude that miR-503 promotes cardiac fibrosis via miR-503-Apelin-13-TGF-β-CTGF-collagen production pathway. Thus, miR-503 is a promising therapeutic target for reducing cardiac fibrosis.


dFoxO promotes Wingless signaling in Drosophila.

  • Shiping Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

The Wnt/β-catenin signaling is an evolutionarily conserved pathway that regulates a wide range of physiological functions, including embryogenesis, organ maintenance, cell proliferation and cell fate decision. Dysregulation of Wnt/β-catenin signaling has been implicated in various cancers, but its role in cell death has not yet been fully elucidated. Here we show that activation of Wg signaling induces cell death in Drosophila eyes and wings, which depends on dFoxO, a transcription factor known to be involved in cell death. In addition, dFoxO is required for ectopic and endogenous Wg signaling to regulate wing patterning. Moreover, dFoxO is necessary for activated Wg signaling-induced target genes expression. Furthermore, Arm is reciprocally required for dFoxO-induced cell death. Finally, dFoxO physically interacts with Arm both in vitro and in vivo. Thus, we have characterized a previously unknown role of dFoxO in promoting Wg signaling, and that a dFoxO-Arm complex is likely involved in their mutual functions, e.g. cell death.


Hypoxia regulates CD9-mediated keratinocyte migration via the P38/MAPK pathway.

  • Xupin Jiang‎ et al.
  • Scientific reports‎
  • 2014‎

Keratinocyte migration is an early event in the wound healing process. Although we previously found that CD9 downregulation is required for the keratinocyte migration during wound repair, the mechanism of how CD9 expression is regulated remains unclear. Here, we observed the effect of hypoxia (2% O2) on CD9 expression and keratinocyte migration. CD9 expression was downregulated and keratinocyte migration was increased under hypoxic conditions. In addition, CD9 overexpression reversed hypoxia-induced cell migration. We also found that hypoxia activated the p38/MAPK pathway. SB203580, a p38/MAPK inhibitor, increased CD9 expression and inhibited keratinocyte migration under hypoxia, while MKK6 (Glu) overexpression decreased CD9 expression and promoted hypoxic keratinocyte migration. Our results demonstrate that hypoxia regulates CD9 expression and CD9-mediated keratinocyte migration via the p38/MAPK pathway.


Taxonomic Characterization and Secondary Metabolite Analysis of NEAU-wh3-1: An Embleya Strain with Antitumor and Antibacterial Activity.

  • Han Wang‎ et al.
  • Microorganisms‎
  • 2020‎

Cancer is a serious threat to human health. With the increasing resistance to known drugs, it is still urgent to find new drugs or pro-drugs with anti-tumor effects. Natural products produced by microorganisms have played an important role in the history of drug discovery, particularly in the anticancer and anti-infective areas. The plant rhizosphere ecosystem is a rich resource for the discovery of actinomycetes with potential applications in pharmaceutical science, especially Streptomyces. We screened Streptomyces-like strains from the rhizosphere soil of wheat (Triticum aestivum L.) in Hebei province, China, and thirty-nine strains were obtained. Among them, the extracts of 14 isolates inhibited the growth of colon tumor cell line HCT-116. Strain NEAU-wh-3-1 exhibited better inhibitory activity, and its active ingredients were further studied. Then, 16S rRNA gene sequence similarity studies showed that strain NEAU-wh3-1 with high sequence similarities to Embleya scabrispora DSM 41855T (99.65%), Embleya hyalina MB891-A1T (99.45%), and Streptomyces lasii 5H-CA11T (98.62%). Moreover, multilocus sequence analysis based on the five other house-keeping genes (atpD, gyrB, rpoB, recA, and trpB) and polyphasic taxonomic approach comprising chemotaxonomic, phylogenetic, morphological, and physiological characterization indicated that the isolate should be assigned to the genus Embleya and was different from its closely related strains, therefore, it is proposed that strain NEAU-wh3-1 may be classified as representatives of a novel species of the genus Embleya. Furthermore, active substances in the fermentation broth of strain NEAU-wh-3-1 were isolated by bioassay-guided analysis and identified by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analyses. Consequently, one new Zincophorin analogue together with seven known compounds was detected. The new compound showed highest antitumor activity against three human cell lines with the 50% inhibition (IC50) values of 8.8-11.6 μg/mL and good antibacterial activity against four pathogenic bacteria, the other known compounds also exhibit certain biological activity.


Dimeric Pimprinine Alkaloids From Soil-Derived Streptomyces sp. NEAU-C99.

  • Zhiyin Yu‎ et al.
  • Frontiers in chemistry‎
  • 2020‎

Six new pimprinine alkaloids (1-6), including four dimers, dipimprinines A-D (1-4), and two monomers, (±)-Pimprinol D (5), and pimprinone A (6), along with six known congeners (7-12), were isolated from a soil-derived actinomycete Streptomyces sp. NEAU-C99. Structures of the new compounds were elucidated by extensive spectroscopic analyses, single-crystal X-ray diffractions, and ECD calculations. Dipimprinines A-D (1-4) showed weak cytotoxic activities against five tumor cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW-480, with IC50 values ranging from 12.7 to 30.7 μM.


Early life gut microbiota sustains liver-resident natural killer cells maturation via the butyrate-IL-18 axis.

  • Panpan Tian‎ et al.
  • Nature communications‎
  • 2023‎

Liver-resident natural killer cells, a unique lymphocyte subset in liver, develop locally and play multifaceted immunological roles. However, the mechanisms for the maintenance of liver-resident natural killer cell homeostasis remain unclear. Here we show that early-life antibiotic treatment blunt functional maturation of liver-resident natural killer cells even at adulthood, which is dependent on the durative microbiota dysbiosis. Mechanistically, early-life antibiotic treatment significantly decreases butyrate level in liver, and subsequently led to defective liver-resident natural killer cell maturation in a cell-extrinsic manner. Specifically, loss of butyrate impairs IL-18 production in Kupffer cells and hepatocytes through acting on the receptor GPR109A. Disrupted IL-18/IL-18R signaling in turn suppresses the mitochondrial activity and the functional maturation of liver-resident natural killer cells. Strikingly, dietary supplementation of experimentally or clinically used Clostridium butyricum restores the impaired liver-resident natural killer cell maturation and function induced by early-life antibiotic treatment. Our findings collectively unmask a regulatory network of gut-liver axis, highlighting the importance of the early-life microbiota in the development of tissue-resident immune cells.


The Galvanotactic Migration of Keratinocytes is Enhanced by Hypoxic Preconditioning.

  • Xiaowei Guo‎ et al.
  • Scientific reports‎
  • 2015‎

The endogenous electric field (EF)-directed migration of keratinocytes (galvanotaxis) into wounds is an essential step in wound re-epithelialization. Hypoxia, which occurs immediately after injury, acts as an early stimulus to initiate the healing process; however, the mechanisms for this effect, remain elusive. We show here that the galvanotactic migration of keratinocytes was enhanced by hypoxia preconditioning as a result of the increased directionality rather than the increased motility of keratinocytes. This enhancement was both oxygen tension- and preconditioning time-dependent, with the maximum effects achieved using 2% O2 preconditioning for 6 hours. Hypoxic preconditioning (2% O2, 6 hours) decreased the threshold voltage of galvanotaxis to < 25 mV/mm, whereas this value was between 25 and 50 mV/mm in the normal culture control. In a scratch-wound monolayer assay in which the applied EF was in the default healing direction, hypoxic preconditioning accelerated healing by 1.38-fold compared with the control conditions. Scavenging of the induced ROS by N-acetylcysteine (NAC) abolished the enhanced galvanotaxis and the accelerated healing by hypoxic preconditioning. Our data demonstrate a novel and unsuspected role of hypoxia in supporting keratinocyte galvanotaxis. Enhancing the galvanotactic response of cells might therefore be a clinically attractive approach to induce improved wound healing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: