Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 165 papers

Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population.

  • Yu An‎ et al.
  • BMC medical genomics‎
  • 2016‎

Ventricular septal defects (VSDs) constitute the most prevalent congenital heart disease (CHD), occurs either in isolation (isolated VSD) or in combination with other cardiac defects (complex VSD). Copy number variation (CNV) has been highlighted as a possible contributing factor to the etiology of many congenital diseases. However, little is known concerning the involvement of CNVs in either isolated or complex VSDs.


Associations of self-reported and objectively measured sleep disturbances with depression among primary caregivers of children with disabilities.

  • Olivia R Orta‎ et al.
  • Nature and science of sleep‎
  • 2016‎

The objective of this study was to determine the association between sleep and depression using both self-reported (subjective) and actigraphic (objective) sleep traits.


Inhibition of Extracellular Calcium Influx Results in Enhanced IL-12 Production in LPS-Treated Murine Macrophages by Downregulation of the CaMKKβ-AMPK-SIRT1 Signaling Pathway.

  • Xin Liu‎ et al.
  • Mediators of inflammation‎
  • 2016‎

Activated macrophages are the primary sources of IL-12, a key cytokine bridging innate and adaptive immunity. However, macrophages produce low amounts of IL-12 upon stimulation and the underlying regulatory mechanism remains unclear. In this study, we found a new calcium-dependent mechanism that controlled IL-12 production in LPS-treated murine macrophages. First, LPS was demonstrated to induce extracellular calcium entry in murine peritoneal macrophages and inhibition of calcium influx resulted in marked enhancement in IL-12 production. Then, withdrawal of extracellular calcium was found to suppress CaMKKβ and AMPK activation triggered by LPS while chemical inhibition or genetic knockdown of these two kinases augmented LPS induced IL-12 production. AMPK activation increased the NAD(+)/NADH ratio and activated Sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylating enzyme and negative regulator of inflammation. Chemical inhibitor or siRNA of SIRT1 enhanced IL-12 release while its agonist suppressed IL-12 production. Finally, it was found that SIRT1 selectively affected the transcriptional activity of NF-κB which thereby inhibited IL-12 production. Overall, our study demonstrates a new role of transmembrane calcium mobilization in immunity modulation such that inhibition of calcium influx leads to impaired activation of CaMKKβ-AMPK-SIRT1 signaling pathway which lifts restriction on NF-κB activation and results in enhanced IL-12 production.


Media composition modulates human embryonic stem cell morphology and may influence preferential lineage differentiation potential.

  • Linda Harkness‎ et al.
  • PloS one‎
  • 2019‎

Undifferentiated human embryonic stem cells have a distinct morphology (hESC). Changes in cell morphology during culture can be indicative of differentiation. hESC, maintained in diverse medias, demonstrated alterations in morphological parameters and subsequent alterations in underlying transcript expression and lineage differentiation. Analysis of morphological parameters showed distinct and significant differences between the undefined, less defined and Xeno-free medias while still maintaining pluripotency markers. This suggested that the less defined media may be creating dynamic instability in the cytoskeleton, with the cytoskeleton becoming more stabilised in the Xeno-free media as demonstrated by smaller and rounder cells. Examination of early lineage markers during undirected differentiation using d5 embryoid bodies demonstrated increased mesodermal lineage preference as compared to endodermal or ectoderm in cells originally cultured in Xeno-free media. Undefined media showed preference for mesoderm and ectoderm lineages, while less defined media (BSA present) demonstrated no preference. These data reveal that culture media may produce fundamental changes in cell morphology which are reflected in early lineage differentiation choice.


Divalent metal modulation of Japanese flounder (Paralichthys olivaceus) purinergic P2X7 receptor.

  • Carolina Paredes‎ et al.
  • FEBS open bio‎
  • 2018‎

Paralichthys olivaceus P2X7 receptor (poP2X7R) is a recently identified as a P2X7 purinergic receptor involved in innate immunity of the Japanese flounder Paralichthys olivaceus. Divalent metals are allosteric modulators of mammalian P2XRs, but there is no information for fish P2XRs. Here, we characterized the effects of divalent metals on poP2X7R channel activity by electrophysiology and molecular biology techniques. Copper, zinc and mercury inhibited poP2X7R-mediated currents with different maximal inhibition potency, while cadmium had no effect on poP2X7R activity. Mercury-induced inhibition was irreversible, but the inhibitory effects of copper and zinc were reversed after washout. Cooper and zinc also reduced poP2X7R-mediated interleukin-1 mRNA production. These findings suggest that divalent metals have potential effects on the Japanese flounder innate immune response through modulation of poP2X7R activity.


Lack of RNase L attenuates macrophage functions.

  • Xin Yi‎ et al.
  • PloS one‎
  • 2013‎

Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and cyclooxygenase-2 (Cox-2) by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN) inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown.


Integrated analysis of the potential roles of miRNA‑mRNA networks in triple negative breast cancer.

  • Huiru Zhu‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Triple negative breast cancer (TNBC) is a type of breast cancer where the tumor cells are negative for the estrogen, progesterone and human epidermal growth factor 2 receptors. To date, expression profiling of microRNA (miRNA/miR) and mRNA sequences have been widely applied for the diagnosis of TNBC. In the present study, an integrated analysis of miRNA‑mRNA profiling arrays was performed. A total of five dysregulated miRNAs in patients with TNBC were identified, including upregulated miR‑558 expression and downregulated miR‑320d‑1, miR‑548v, miR‑99a and miR‑21 expression. In addition, 49 potential target mRNA sequences were identified. Bioinformatics analyses were performed on the identified miRNAs and mRNAs, including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway and miRNA‑mRNA network analyses. A total of 31 GO terms and three signaling pathways were identified. The results indicated that the differentially expressed miRNAs and their potential target mRNAs may affect the pathogenesis of TNBC, and may therefore be considered as promising biomarkers for the early diagnosis and targeted therapy of patients with TNBC.


Metabolite Profiling, Pharmacokinetics, and In Vitro Glucuronidation of Icaritin in Rats by Ultra-Performance Liquid Chromatography Coupled with Mass Spectrometry.

  • Beibei Zhang‎ et al.
  • Journal of analytical methods in chemistry‎
  • 2017‎

Icaritin is a naturally bioactive flavonoid with several significant effects. This study aimed to clarify the metabolite profiling, pharmacokinetics, and glucuronidation of icaritin in rats. An ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) assay was developed and validated for qualitative and quantitative analysis of icaritin. Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid- (UDPGA-) supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. A total of 30 metabolites were identified or tentatively characterized in rat biosamples based on retention times and characteristic fragmentations, following proposed metabolic pathway which was summarized. Additionally, the pharmacokinetics parameters were investigated after oral administration of icaritin. Moreover, icaritin glucuronidation in rat liver microsomes was efficient with CLint (the intrinsic clearance) values of 1.12 and 1.56 mL/min/mg for icaritin-3-O-glucuronide and icaritin-7-O-glucuronide, respectively. Similarly, the CLint values of icaritin-3-O-glucuronide and icaritin-7-O-glucuronide in rat intestine microsomes (RIM) were 1.45 and 0.86 mL/min/mg, respectively. Taken altogether, dehydrogenation at isopentenyl group and glycosylation and glucuronidation at the aglycone were main biotransformation process in vivo. The general tendency was that icaritin was transformed to glucuronide conjugates to be excreted from rat organism. In conclusion, these results would improve our understanding of metabolic fate of icaritin in vivo.


Comparative analysis of serum proteome in congenital scoliosis patients with TBX6 haploinsufficiency - a first report pointing to lipid metabolism.

  • Qiankun Zhu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Congenital scoliosis (CS) is a three-dimensional deformity of the spine affecting quality of life. We have demonstrated TBX6 haploinsufficiency is the most important contributor to CS. However, the pathophysiology at the protein level remains unclear. Therefore, this study was to explore the differential proteome in serum of CS patients with TBX6 haploinsufficiency. Sera from nine CS patients with TBX6 haploinsufficiency and nine age- and gender-matched healthy controls were collected and analysed by isobaric tagged relative and absolute quantification (iTRAQ) labelling coupled with mass spectrometry (MS). In total, 277 proteins were detected and 20 proteins were designated as differentially expressed proteins, which were submitted to subsequent bioinformatics analysis. Gene Ontology classification analysis showed the biological process was primarily related to 'cellular process', molecular function 'structural molecule activity' and cellular component 'extracellular region'. IPA analysis revealed 'LXR/RXR activation' was the top pathway, which is a crucial pathway in lipid metabolism. Hierarchical clustering analysis generated two clusters. In summary, this study is the first proteomic research to delineate the total and differential serum proteins in TBX6 haploinsufficiency-caused CS. The proteins discovered in this experiment may serve as potential biomarkers for CS, and lipid metabolism might play important roles in the pathogenesis of CS.


Roles of DgBRC1 in regulation of lateral branching in chrysanthemum (Dendranthema ×grandiflora cv. Jinba).

  • Xiaoli Chen‎ et al.
  • PloS one‎
  • 2013‎

The diverse plasticity of plant architecture is largely determined by shoot branching. Shoot branching is an event regulated by multiple environmental, developmental and hormonal stimuli through triggering lateral bud response. After perceiving these signals, the lateral buds will respond and make a decision on whether to grow out. TCP transcriptional factors, BRC1/TB1/FC1, were previously proven to be involved in local inhibition of shoot branching in Arabidopsis, pea, tomato, maize and rice. To investigate the function of BRC1, we isolated the BRC1 homolog from chrysanthemum. There were two transcripts of DgBRC1 coming from two alleles in one locus, both of which complemented the multiple branches phenotype of Arabidopsis brc1-1, indicating that both are functionally conserved. DgBRC1 was mainly expressed in dormant axillary buds, and down-regulated at the bud activation stage, and up-regulated by higher planting densities. DgBRC1 transcripts could respond to apical auxin supply and polar auxin transport. Moreover, we found that the acropetal cytokinin stream promoted branch outgrowth whether or not apical auxin was present. Basipetal cytokinin promoted outgrowth of branches in the absence of apical auxin, while strengthening the inhibitory effects on lower buds in the presence of apical auxin. The influence of auxin and strigolactons (SLs) on the production of cytokinin was investigated, we found that auxin locally down-regulated biosynthesis of cytokinin in nodes, SLs also down-regulated the biosynthesis of cytokinin, the interactions among these phytohormones need further investigation.


Clinical and molecular genetic characterization of familial MECP2 duplication syndrome in a Chinese family.

  • Xiaoyan Li‎ et al.
  • BMC medical genetics‎
  • 2017‎

Chromosomal duplication at the Xq28 region including the MECP2 gene, share consistent clinical phenotypes and a distinct facial phenotype known as MECP2 duplication syndrome. The typical clinical features include infantile hypotonia , mild dysmorphic features, a broad range of neurodevelopmental disorders, recurrent infections, and progressive spasticity.


Down-regulation of guanylate binding protein 1 causes mitochondrial dysfunction and cellular senescence in macrophages.

  • Xiaoxue Qiu‎ et al.
  • Scientific reports‎
  • 2018‎

Macrophage polarization is tightly associated with its metabolic reprograming and immune dysfunction. However, the intracellular molecules/pathways that connect these alterations in inflammatory macrophages remain largely unidentified. Herein, we explored the role of guanylate binding protein 1 (Gbp1), an intracellular anti-microbial protein, in regulating polarization, metabolic reprogramming, and cellular aging of macrophages. We showed that Gbp1 expression in inguinal white adipose tissue is significantly decreased in high-fat diet -fed and aged mice. Gbp1 expression is significantly induced by IFNγ and LPS in macrophages but not adipocytes. Downregulation of Gbp1 expression causes macrophage polarization towards a pro-inflammatory phenotype. Gbp1 knockdown (Kd) macrophages have impaired mitochondrial respiratory function, which is further supported by down-regulation of genes encoding electron transport chain components and genes involved in fatty acid oxidation and mitochondrial function. Moreover, we observed Gbp1 is localized in both cytosol and mitochondrial fraction, and Gbp1 Kd macrophages display decreased mitophagy activity. More interestingly, Gbp1 Kd macrophages undergo senescence as evidenced by increased activation of AMPK-p53 pathway and positive staining of β-galactosidase. These observations suggest that Gbp1 may play an important role in protecting against mitochondrial dysfunction and preserving immune function of macrophages during inflammatory stress and aging.


Screening and characterization of a novel thermostable lipase with detergent-additive potential from the metagenomic library of a mangrove soil.

  • Leli Tang‎ et al.
  • Gene‎
  • 2017‎

One clone (Lip906) exhibiting lipase activity was screened from a metagenomic library by using a medium containing tricaprylin. A novel lipase gene from the inserted fragment of Lip906 was obtained by sequencing. The phylogenetic analysis of Lip906 lipase exhibited 34% and 32% homologue to lipases from Streptomyces sp. MspMP-M5 and Rhodopirellula europaea. This gene was expressed in Escherichia coli (E. coli) BL21 (DE3), and the recombinant protein was purified and characterized. The best substrate of the recombinant Lip906 lipase was p-nitrophenyl myristate (C14). The lipase expressed maximum activity at 74°C and pH7.8, and it was found to be stable at pH values and temperatures ranging from 6.0-8.0 and 4-78°C, respectively. Furthermore, the lipase was found to be highly resistant to commercial detergent, DMSO, and EDTA, whereas its activity was stimulated in the presence of methanol and ethanol at low concentrations. The lipase showed enhanced activity in the presence of Hg2+, whereas the presence of the metal ions Fe2+, Ca2+, Co2+, and Mg2+ inhibited the activity. These beneficial characteristics of Lip906 lipase provide some advantages for its potential application in industry.


Serum long non-coding RNAs MALAT1, AFAP1-AS1 and AL359062 as diagnostic and prognostic biomarkers for nasopharyngeal carcinoma.

  • Baoyu He‎ et al.
  • Oncotarget‎
  • 2017‎

Circulating RNAs in serum, plasma or other body liquid have emerged as useful and highly promising biomarkers for noninvasive diagnostic application. Herein, we aimed to establish a serum long non-coding RNAs (lncRNAs) signature for diagnosing nasopharyngeal carcinoma (NPC). In this study, we recruited a cohort of 101 NPC patients, 20 patients with chronic nasopharyngitis (CN), 20 EBV carriers (EC) and 101 healthy controls. qRT-PCR was performed with NPC cells and serum samples to screen a pool of 38 NPC-related lncRNAs obtained from the LncRNADisease database. A profile of three circulating lncRNAs (MALAT1, AFAP1-AS1 and AL359062) was established for NPC diagnosis. By Receiver Operating Characteristic (ROC) curve analysis, this three-lncRNA signature showed high accuracy in discriminating NPC from healthy controls (AUC = 0.918), CN (AUC = 0.893) or EC (AUC = 0.877). Furthermore, high levels of these three lncRNAs were closely related to advanced NPC tumor node metastasis stages and EBV infection. Serum levels of these three lncRNAs declined significantly in patients after therapy. Our present study indicates that circulating MALAT1, AFAP1-AS1 and AL359062 may represent novel serum biomarkers for NPC diagnosis and prognostic prediction after treatment.


Comparative Plastome Analysis of Root- and Stem-Feeding Parasites of Santalales Untangle the Footprints of Feeding Mode and Lifestyle Transitions.

  • Xiaoli Chen‎ et al.
  • Genome biology and evolution‎
  • 2020‎

In plants, parasitism triggers the reductive evolution of plastid genomes (plastomes). To disentangle the molecular evolutionary associations between feeding on other plants below- or aboveground and general transitions from facultative to obligate parasitism, we analyzed 34 complete plastomes of autotrophic, root- and stem-feeding hemiparasitic, and holoparasitic Santalales. We observed inexplicable losses of housekeeping genes and tRNAs in hemiparasites and dramatic genomic reconfiguration in holoparasitic Balanophoraceae, whose plastomes have exceptionally low GC contents. Genomic changes are related primarily to the evolution of hemi- or holoparasitism, whereas the transition from a root- to a stem-feeding mode plays no major role. In contrast, the rate of molecular evolution accelerates in a stepwise manner from autotrophs to root- and then stem-feeding parasites. Already the ancestral transition to root-parasitism coincides with a relaxation of selection in plastomes. Another significant selectional shift in plastid genes occurs as stem-feeders evolve, suggesting that this derived form coincides with trophic specialization despite the retention of photosynthetic capacity. Parasitic Santalales fill a gap in our understanding of parasitism-associated plastome degeneration. We reveal that lifestyle-genome associations unfold interdependently over trophic specialization and feeding mode transitions, where holoparasitic Balanophoraceae provide a system for exploring the functional realms of plastomes.


Noscapine Induces Apoptosis in Human Colon Cancer Cells by Regulating Mitochondrial Damage and Warburg Effect via PTEN/PI3K/mTOR Signaling Pathway.

  • Xia Tian‎ et al.
  • OncoTargets and therapy‎
  • 2020‎

Noscapine is an opium alkaloid that has recently been shown to potentiate anti-cancer therapeutic effects by inducing apoptosis in various malignant cells without any detectable toxicity. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear.


Fibronectin-conjugated thermoresponsive nanobridges generate three dimensional human pluripotent stem cell cultures for differentiation towards the neural lineages.

  • Linda Harkness‎ et al.
  • Stem cell research‎
  • 2019‎

Production of 3-dimensional neural progenitor cultures from human pluripotent stem cells offers the potential to generate large numbers of cells. We utilised our nanobridge system to generate 3D hPSC aggregates for differentiation towards the neural lineage, and investigate the ability to passage aggregates while maintaining cells at a stem/progenitor stage. Over 38 days, aggregate cultures exhibited upregulation and maintenance of neural-associated markers and demonstrated up to 10 fold increase in cell number. Aggregates undergoing neural induction in the presence or absence of nanobridges demonstrated no differences in marker expression, proliferation or viability. However, aggregates formed without nanobridges were statistically significantly fewer and smaller by passage 3. Organoids, cultured from aggregates, and treated with retinoic acid or rock inhibitor demonstrated terminal differentiation as assessed by immunohistochemistry. These data demonstrate that nanobridge 3D hPSC can differentiate to neural stem/progenitor cells, and be maintained at this stage through serial passaging and expansion.


miR-455-3p Functions as a Tumor Suppressor by Restraining Wnt/β-Catenin Signaling via TAZ in Pancreatic Cancer.

  • Ting Zhan‎ et al.
  • Cancer management and research‎
  • 2020‎

Pancreatic cancer (PC) is a highly invasive tumor with a poor prognosis, short overall survival rate and few chemotherapeutic choices. Despite the importance of finding ways to treat pancreatic cancer, the mechanisms of tumor progression have not been fully elucidated. microRNA-455-3p (miR-455-3p) has been reported to play an important role in several cancers, but its function in pancreatic cancer remains unclear.


Anti-TGF-β attenuates tumor growth via polarization of tumor associated neutrophils towards an anti-tumor phenotype in colorectal cancer.

  • Fengxian Qin‎ et al.
  • Journal of Cancer‎
  • 2020‎

Tumor associated neutrophils (TANs) play important roles in the progress of CRC. Since tumor microenvironments could influence the phenotypes of TANs, altering the tumor microenvironment to polarize the phenotype of TANs may be a new strategy for tumor treatment. This study aims to investigate the effect of anti-TGF-β on the polarization of TANs from a pro-tumor phenotype towards an anti-tumor phenotype in CRC. In this work, CRC patients had more infiltration of TANs and higher expression of TGF-β in CRC tissue when compared with the controls. In vitro, SW480 cells were co-cultured with primed neutrophils, which simulated the TANs in the tumor microenvironment, and TGF-β was blocked by anti-TGF-β (1D11) in order to polarize TANs. Anti-TGF-β treatment increased the cytotoxicity of TANs and decreased the metastatic chemoattractants secreted by TANs, and ultimately increased the apoptosis of CRC cells significantly while remarkably suppressing the migration of tumor cells. The changes of signaling pathways in the TANs and tumor cells were explored. The results showed that anti-TGF-β attenuated CRC may be partly mediated by suppression of PI3K/AKT signaling pathways in TANs and partly mediated by suppression of TGF-β/Smad signaling pathways in tumor cells. Furthermore, the tumor in the mice treated with 1D11 was obviously smaller and had reverse tumorigenesis compared with the controls, while neutrophil depletion reduced the anti-tumor effect of 1D11. Our data suggest that anti-TGF-β attenuates tumor growth via the polarization of TANs to an anti-tumor phenotype in CRC, which provides new strategies for CRC treatment.


Effects of Ginkgo biloba on Early Decompression after Spinal Cord Injury.

  • Xing Guo‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2020‎

Spinal cord injury (SCI) is a severe trauma of the central nervous system characterized by high disability and high mortality. Clinical progress has been achieved in understanding the pathological mechanism of SCI and its early treatment, but the results are unsatisfactory. In China, increasing attention has been paid to the role of traditional Chinese medicine in the treatment of SCI. In particular, extracts from the leaves of Ginkgo biloba (maidenhair tree), which have been reported to exert anti-inflammatory and antioxidant properties and repair a variety of active cellular damage, have been applied therapeutically for centuries. In this study, we established a rat SCI model to investigate the effects of Ginkgo biloba leaves on decompression at different stages of SCI. The application of Ginkgo biloba leaves during the decompression of SCI at different time points, the neurological recovery of SCI, and the underlying molecular mechanism were explored. The findings provide reliable experimental data that reveal the mechanism of GBI (Ginkgo biloba injection) in the clinical treatment of SCI.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: