Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 240 papers

Draft Genome Sequence of Chromobacterium violaceum Strain CV017.

  • Xiaofei Wang‎ et al.
  • Genome announcements‎
  • 2016‎

We announce the draft genome sequence for Chromobacterium violaceum strain CV017, used as a model and tool to understand acyl-homoserine lactone-dependent quorum sensing. The assembly consists of 4,774,638-bp contained in 211 scaffolds.


Epithelial neoplasia coincides with exacerbated injury and fibrotic response in the lungs of Gprc5a-knockout mice following silica exposure.

  • Xiaofei Wang‎ et al.
  • Oncotarget‎
  • 2015‎

Exposure to crystalline silica is suggested to increase the risk for a variety of lung diseases, including fibrosis and lung cancer. However, epidemiological evidences for the exposure-risk relationship are ambiguous and conflicting, and experimental study from a reliable animal model to explore the relationship is lacking. We reasoned that a mouse model that is sensitive to both lung injury and tumorigenesis would be appropriate to evaluate the exposure-risk relationship. Previously, we showed that, Gprc5a-/- mice are susceptible to both lung tumorigenesis and endotoxin-induced acute lung injury. In this study, we investigated the biological consequences in Gprc5a-/- mouse model following silica exposure. Intra-tracheal administration of fine silica particles in Gprc5a-/- mice resulted in more severe lung injury and pulmonary inflammation than in wild-type mice. Moreover, an enhanced fibrogenic response, including EMT-like characteristics, was induced in the lungs of Gprc5a-/- mice compared to those from wild-type ones. Importantly, increased hyperplasia or neoplasia coincided with silica-induced tissue injury and fibrogenic response in lungs from Gprc5a-/- mice. Consistently, expression of MMP9, TGFβ1 and EGFR was significantly increased in lungs from silica-treated Gprc5a-/- mice compared to those untreated or wild-type ones. These results suggest that, the process of tissue repair coincides with tissue damages; whereas persistent tissue damages leads to abnormal repair or neoplasia. Thus, silica-induced pulmonary inflammation and injury contribute to increased neoplasia development in lungs from Gprc5a-/- mouse model.


Molecular tools to support metabolic and immune function research in the Guinea Fowl (Numida meleagris).

  • Carl E Darris‎ et al.
  • BMC genomics‎
  • 2015‎

Guinea fowl (Numidia meleagris) production as an alternative source of meat and poultry has shown potential for economic viability. However, there has been little progress in characterizing the transcriptome of the guinea fowl. In this study RNA-sequencing and de novo transcriptome assembly of several Guinea fowl tissues (pancreas, hypothalamus, liver, bone marrow and bursa) which play key roles in regulating feed intake, satiety, and immune function was performed using Illumina's Hi-Seq 2000.


Application of Subspace Clustering in DNA Sequence Analysis.

  • Tim Wallace‎ et al.
  • Journal of computational biology : a journal of computational molecular cell biology‎
  • 2015‎

Identification and clustering of orthologous genes plays an important role in developing evolutionary models such as validating convergent and divergent phylogeny and predicting functional proteins in newly sequenced species of unverified nucleotide protein mappings. Here, we introduce an application of subspace clustering as applied to orthologous gene sequences and discuss the initial results. The working hypothesis is based upon the concept that genetic changes between nucleotide sequences coding for proteins among selected species and groups may lie within a union of subspaces for clusters of the orthologous groups. Estimates for the subspace dimensions were computed for a small population sample. A series of experiments was performed to cluster randomly selected sequences. The experimental design allows for both false positives and false negatives, and estimates for the statistical significance are provided. The clustering results are consistent with the main hypothesis. A simple random mutation binary tree model is used to simulate speciation events that show the interdependence of the subspace rank versus time and mutation rates. The simple mutation model is found to be largely consistent with the observed subspace clustering singular value results. Our study indicates that the subspace clustering method may be applied in orthology analysis.


Copper stress response in yeast Rhodotorula mucilaginosa AN5 isolated from sea ice, Antarctic.

  • Guangfeng Kan‎ et al.
  • MicrobiologyOpen‎
  • 2019‎

Heavy metal pollution in Antarctic is serious by anthropogenic emissions and atmospheric transport. To dissect the heavy metal adaptation mechanisms of sea-ice organisms, a basidiomycetous yeast strain AN5 was isolated and its cellular changes were analyzed. Morphological, physiological, and biochemical characterization indicated that this yeast strain belonged to Rhodotorula mucilaginosa AN5. Heavy metal resistance pattern of Cd > Pb = Mn > Cu > Cr > Hg was observed. Scanning electron microscopic (SEM) results exhibited altered cell surface morphology under the influence of copper metal compared to that with control. The determination of physiological and biochemical changes manifested that progressive copper treatment significantly increased antioxidative reagents content and enzymes activity in the red yeast, which quench the active oxygen species to maintain the intercellular balance of redox state and ensure the cellular fission and growth. Comparative proteomic analysis revealed that, under 2 mM copper stress, 95 protein spots were tested reproducible changes of at least 10-fold in cells. Among 95 protein spots, 43 were elevated and 52 were decreased synthesis. After MALDI TOF MS/MS analysis, 51 differentially expressed proteins were identified successfully and classified into six functional groups, including carbohydrate and energy metabolism, nucleotide and protein metabolism, protein folding, antioxidant system, signaling, and unknown function proteins. Function analysis indicated that carbohydrate and energy metabolism-, nucleotide and protein metabolism-, and protein folding-related proteins played central role to the heavy metal resistance of Antarctic yeast. Generally, the results revealed that the yeast has a great capability to cope with heavy metal stress and activate the physiological and protein mechanisms, which allow more efficient recovery after copper stress. Our studies increase understanding of the molecular resistance mechanism of polar yeast to heavy metal, which will be benefitted for the sea-ice isolates to be a potential candidate for bioremediation of metal-contaminated environments.


MiR-99b-5p and miR-203a-3p Function as Tumor Suppressors by Targeting IGF-1R in Gastric Cancer.

  • Zhenzhen Wang‎ et al.
  • Scientific reports‎
  • 2018‎

MicroRNAs (miRNAs) have been explored in many critical cellular processes, including proliferation and apoptosis. The purpose of this study was to detect the biological function and regulation of miR-99b-5p and miR-203a-3p in gastric cancer (GC). Here, we demonstrated that miR-99b-5p/203a-3p were downregulated in both GC tissues and cell lines. MiR-99b-5p/203a-3p overexpression reduced GC cell proliferation and cell cycle progression in vitro. Notably, we combined bioinformatics tools with biological validation assays to demonstrate that insulin-like growth factor 1 receptor (IGF-1R) is a direct co-target and functional mediator of miR-99b-5p/203a-3p in GC cells. Mechanistically, the AKT pathway, which is downstream of IGF-1R, is essential for the functional roles of miR-99b-5p/203a-3p in GC cells. Taken together, our data revealed that IGF-1R is a direct co-target of miR-99b-5p/203a-3p, and miR-99b-5p/203a-3p may function as tumor suppressive miRNAs by negatively regulating IGF-1R expression in GC cells.


Genetic links between post-reproductive lifespan and family size in Framingham.

  • Xiaofei Wang‎ et al.
  • Evolution, medicine, and public health‎
  • 2013‎

Is there a trade-off between children ever born (CEB) and post-reproductive lifespan in humans? Here, we report a comprehensive analysis of reproductive trade-offs in the Framingham Heart Study (FHS) dataset using phenotypic and genotypic correlations and a genome-wide association study (GWAS) to look for single-nucleotide polymorphisms (SNPs) that are related to the association between CEB and lifespan.


Identification and validation of a novel major QTL for harvest index in rice (Oryza sativa L.).

  • Shaohong Zhang‎ et al.
  • Rice (New York, N.Y.)‎
  • 2017‎

Harvest index (HI) in rice is defined as the ratio of grain yield (GY) to biomass (BM). Although it has been demonstrated that HI is significantly related to yield and is considered as one of the most important traits in high-yielding rice breeding, HI-based high-yielding rice breeding is difficult due to its polygenic nature and insufficient knowledge on the genetic basis of HI. Therefore, searching for rice varieties with high HI and mapping genes associated with high HI can facilitate marker-assisted breeding for high HI in rice.


Mitochondrial transcription factor A regulated ionizing radiation-induced mitochondrial biogenesis in human lung adenocarcinoma A549 cells.

  • Jing Yu‎ et al.
  • Journal of radiation research‎
  • 2013‎

Mitochondrial transcription factor A (TFAM), the first well-characterized transcription factor from vertebrate mitochondria, is closely related to mitochondrial DNA (mtDNA) maintenance and repair. Recent evidence has shown that the ratio of mtDNA to nuclearDNA (nDNA) is increased in both human cells and murine tissues after ionizing radiation (IR). However, the underlying mechanism has not as yet been clearly identified. In the present study, we demonstrated that in human lung adenocarcinoma A549 cells, expression of TFAM was upregulated, together with the increase of the relative mtDNA copy number and cytochrome c oxidase (COX) activity after α-particle irradiation. Furthermore, short hairpin RNA (shRNA)-mediated TFAM knockdown inhibited the enhancement of the relative mtDNA copy number and COX activity caused by α-particles. Taken together, our data suggested that TFAM plays a crucial role in regulating mtDNA amplification and mitochondrial biogenesis under IR conditions.


Metformin sensitizes lung cancer cells to treatment by the tyrosine kinase inhibitor erlotinib.

  • Xiaofei Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Lung cancer is one of the deadliest malignant tumors with limited treatment options. Although targeted therapy, using tyrosine-kinase inhibitors such as erlotinib (Erlo), has shown therapeutic benefit, only 15 % patients with mutated epidermal growth factor receptor (EGFR) in lung cancer cells are sensitive. Therefore, additional therapeutic strategy should be developed. In this study, we found that metformin (Met), which is widely used for the treatment of type 2 diabetes (T2D), sensitized lung cancer cells bearing wild-type EGFR to Erlo treatment by enriching cancer cells expressing higher levels of EGFR with persistent phosphorylation. As a consequence, combination of Met and Erlo more efficiently inhibited the growth of lung cancer cells both in vitro and in mice with xenografted tumors. Our results suggest a novel approach to treating lung cancer cases which are originally resistant to Erlo.


ROS-Mediated 15-Hydroxyprostaglandin Dehydrogenase Degradation via Cysteine Oxidation Promotes NAD+-Mediated Epithelial-Mesenchymal Transition.

  • Weixuan Wang‎ et al.
  • Cell chemical biology‎
  • 2018‎

Nicotinamide adenine dinucleotide (NAD) levels decrease with aging as a result of aging-associated CD38 upregulation. Here, we established a cell model with decreased cellular NAD levels by overexpressing CD38 or treating cells with FK866, an inhibitor of nicotinamide phosphoribosyltransferase. We revealed that decreased NAD triggered reactive oxygen species (ROS)-mediated degradation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which drove cells to undergo epithelial-mesenchymal transition (EMT). Moreover, we showed that oxidation of the Cys44 residue to sulfonic acid in 15-PGDH led to its degradation via non-canonical ubiquitination-proteasome and autophagy pathways. Mutation of Cys44 to alanine abolished ROS-induced 15-PGDH degradation. We demonstrated that 15-PGDH silencing promoted EMT, whereas supplementation with NAD precursors increased NAD and 15-PGDH stability, and reversed the EMT process. Taken together, these results suggest that declining NAD levels contribute to age-dependent increases in cancer incidence, and repletion of NAD precursors is beneficial for increasing 15-PGDH expression.


Dual roles of IL-22 at ischemia-reperfusion injury and acute rejection stages of rat allograft liver transplantation.

  • Yi Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Interleukin-22 (IL-22) is a recently identified regulator of inflammation, but little is known about its role in liver transplantation. Therefore, in this study, we explored the roles and the underlying mechanisms of IL-22 in acute allograft rejection by using a rat allogeneic liver transplantation model. Results showed that allograft liver transplantation led to damage of the parent liver and to significantly increased IL-22 expression in the allograft liver and plasma of the recipient rats compared with the rats who received isografts. Moreover, the significantly increased IL-22 expression was accompanied by markedly increased level of phospho-STAT3 in the allogeneic liver tissues after transplantation. Of note, neutralization of the IL-22 protein in recipient rats significantly worsened the function of the allograft liver at 1 day post-transplantation (ischemia-reperfusion injury, IRI) but improved the function at 7 days post-transplantation (acute rejection, AR). At IRI stage, IL-22 protected liver function through the increase of anti-apoptosis and pro-regeneration cytokines. However, IL-22 led to the increase of pro-inflammation factors at AR stage, accompanied by the marked increase of the Th17 and the marked decrease of Treg cells in allograft recipient rats through modulating the expression of chemokines for different cell types, which however were reversed by in vivo IL-22 neutralization. Results indicate the dual roles of IL-22 and suggest the differential potential clinical application of IL-22 at different stage of allograft liver transplantation.


HOXD3 targeted by miR-203a suppresses cell metastasis and angiogenesis through VEGFR in human hepatocellular carcinoma cells.

  • Lumin Wang‎ et al.
  • Scientific reports‎
  • 2018‎

Hepatocellular carcinoma (HCC), one of the most common aggressive tumors worldwide has a relatively high mortality rate among malignant tumors. MicroRNAs (miRNAs), acting as tumor suppressors, are involved in the regulation of invasion, metastasis, and angiogenesis of tumor cells. However, a potential role for miR-203a in HCC has not been described yet. In this study, we show that miR-203a markedly suppresses HCC cell migration, invasion, and angiogenesis. In addition, the transcription factor HOXD3 appears to be a direct target of miR-203a. HOXD3 knockdown substantially decreased HCC cell migration, invasion, and angiogenesis, effects similar to those seen for miR-203a expression. Rescuing the function of HOXD3 attenuated the effect of miR-203a overexpression in HCC cells. Furthermore, HOXD3 can directly target the promoter region of VEGFR and increase VEGFR expression. Taken together, our findings indicate that miR-203a inhibits HCC cell invasion, metastasis, and angiogenesis by negatively targeting HOXD3 and suppressing cell signaling through the VEGFR pathway, suggesting that miR-203a might represent a potential therapeutic target for HCC intervention.


A novel functional gene associated with cold tolerance at the seedling stage in rice.

  • Junliang Zhao‎ et al.
  • Plant biotechnology journal‎
  • 2017‎

Identification and cloning of cold-tolerant genes that can stably express under different cold environments are crucial for molecular rice breeding for cold tolerance. In the previous study, we identified a cold-tolerant QTL at the seedling stage, qCTS-9 which could be detected under different cold environments using a recombinant inbred line (RIL) population derived from a cold-tolerant variety Lijiangxintuanheigu (LTH) and a cold-sensitive variety Shanhuangzhan 2 (SHZ-2). In this study, eight candidate genes within the qCTS-9 interval were identified through integrated analysis of QTL mapping with genomewide differential expression profiling of LTH. The qRT-PCR assay showed that only Os09g0410300 exhibited different expression patterns between LTH and SHZ-2 during cold stress, and significantly positive correlation was found between cold induction of Os09g0410300 and seedling cold tolerance in the RI lines. Five SNPs and one InDel in the promoters of Os09g0410300 were detected between LTH and SHZ-2, and the InDel marker ID410300 designed based on the insertion-deletion polymorphism in the promoter was significantly associated with seedling cold tolerance in RIL population. Further, Os09g0410300 over-expression plants exhibited enhanced cold tolerance at the seedling stage compared with the wild-type plants. Thus, our results suggest that Os09g0410300 is the functional gene underlying qCTS-9. To our knowledge, it is a novel gene contributed to enhance cold tolerance at the seedling stage in rice. Identification of the functional gene underlying qCTS-9 and development of the gene-specific marker will facilitate molecular breeding for cold tolerance at the seedling stage in rice through transgenic approach and marker-assisted selection (MAS).


Anti-bacterial and Anti-biofilm Evaluation of Thiazolopyrimidinone Derivatives Targeting the Histidine Kinase YycG Protein of Staphylococcus epidermidis.

  • Zhihui Lv‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Staphylococcus epidermidis is one of the most important opportunistic pathogens in nosocomial infections. The main pathogenicity associated with S. epidermidis involves the formation of biofilms on implanted medical devices, biofilms dramatically decrease the efficacy of conventional antibiotics and the host immune system. This emphasizes the urgent need for designing novel anti-staphylococcal biofilm agents. Based on the findings that compound 5, targeting the histidine kinase domain of S. epidermidis YycG, possessed bactericidal activity against staphylococci, 39 derivatives of compound 5 with intact thiazolopyrimidinone core structures were newly designed, 7 derivatives were further screened to explore their anti-bacterial and anti-biofilm activities. The seven derivatives strongly inhibited the growth of S. epidermidis and Staphylococcus aureus in the minimal inhibitory concentration range of 1.56-6.25 μM. All the derivatives reduced the proportion of viable cells in mature biofilms. They all displayed low cytotoxicity on mammalian cells and were not hemolytic to human erythrocytes. The biofilm inhibition activities of four derivatives (H5-32, H5-33, H5-34, and H5-35) were further investigated under shearing forces, they all led to significant decreases in the biofilm formation of S. epidermidis. These results were suggestive that the seven derivatives of compound 5 have the potential to be developed into agents for eradicating biofilm-associated infections.


Understanding the Association between Environmental Factors and Longevity in Hechi, China: A Drinking Water and Soil Quality Perspective.

  • Qucheng Deng‎ et al.
  • International journal of environmental research and public health‎
  • 2018‎

The aging population is a big challenge all over the world. However, there are few studies to date investigating the effects of trace element and mineral levels in drinking water and soil (especially in karst areas) on longevity. This study aims to examine temporal and spatial variations in longevity in Hechi (which is recognized as a longevity city) and to investigate relationships between longevity and trace element and mineral levels in drinking water and soils in this city (the karst landscape). Population data were collected from relevant literature and four national population censuses in 1982, 1990, 2000 and 2010. Drinking water and soil samples from Hechi were collected and analyzed. The results demonstrated an obvious clustered distribution for the longevity population in Hechi that has existed stably for decades. The longevity index tended to be significantly positively correlated with H₂SiO₃, Ca and Fe in drinking water and significantly negatively correlated with Sr in soil, indicating that drinking water characteristics contributed significantly to the observed regional longevity. The karst landscape is responsible for abundant trace elements in underground rivers in Hechi, which are beneficial to human health when consumed as drinking water. Good quality and slightly alkaline drinking water rich in trace elements such as H₂SiO₃, Ca, Fe, Na, Mg and low in heavy metals such as Pb and Cd might be an important factor contributing to the longevity phenomenon in Hechi.


CDCA2 acts as an oncogene and induces proliferation of clear cell renal cell carcinoma cells.

  • Fang Li‎ et al.
  • Oncology letters‎
  • 2020‎

Cell division cycle-associated 2 (CDCA2) plays an important role in regulating chromosome structure during mitosis. It is highly expressed in oral squamous cell carcinoma, neuroblastoma and lung adenocarcinoma, and its upregulation is positively associated with tumor progression. However, the expression, biological function and underlying mechanisms of the role of CDCA2 in clear cell renal cell carcinoma (ccRCC) remain poorly understood. In the present study, CDCA2 was demonstrated to be upregulated in ccRCC tissues compared with normal kidney tissue, where higher expression was generally associated with the degree of malignancy. Small interfering RNA-mediated knockdown of CDCA2 expression inhibited the viability and proliferation of 786-O and CAKI-1 cells, as measured by an MTT assay, colony formation assay and flow cytometry. Furthermore, western blot analysis suggested that CDCA2 regulates cell proliferation through the cell cycle-associated proteins cyclin D1 and cyclin dependent kinase 4, and the apoptotic protein Bcl-2. In conclusion, the present study indicated that CDCA2 may be an important factor in ccRCC progression and could be a potential therapeutic target in this disease.


Integrative Transcriptome and Proteome Analysis Identifies Major Molecular Regulation Pathways Involved in Ramie (Boehmeria nivea (L.) Gaudich) under Nitrogen and Water Co-Limitation.

  • Jikang Chen‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2020‎

Water and N are the most important factors affecting ramie (Boehmeria nivea (L.) Gaudich) growth. In this study, de novo transcriptome assembly and Tandem Mass Tags (TMT) based quantitative proteome analysis of ramie under nitrogen and water co-limitation conditions were performed, and exposed to treatments, including drought and N-deficit (WdNd), proper water but N-deficit (WNd), proper N but drought (WdN), and proper N and water (CK), respectively. A total of 64,848 unigenes (41.92% of total unigenes) were annotated in at least one database, including NCBI non-redundant protein sequences (Nr), Swiss-Prot, Protein family (Pfam), Gene Ontology (GO) and KEGG Orthology (KO), and 4268 protein groups were identified. Most significant changes in transcript levels happened under water-limited conditions, but most significant changes in protein level happened under water-limited conditions only with proper N. Poor correlation between differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) was observed in ramie responding to the treatments. DEG/DEP regulation patterns related to major metabolic processes responding to water and N deficiency were analyzed, including photosynthesis, ethylene responding, glycolysis, and nitrogen metabolism. Moreover, 41 DEGs and 61 DEPs involved in regulating adaptation of ramie under water and N stresses were provided in the study, including DEGs/DEPs related to UDP-glucuronosyhransferase (UGT), ATP synthase, and carbonate dehydratase. The strong dependency of N-response of ramie on water conditions at the gene and protein levels was highlighted. Advices for simultaneously improving water and N efficiency in ramie were also provided, especially in breeding N efficient varieties with drought resistance. This study provided extensive new information on the transcriptome, proteome, their correlation, and diversification in ramie responding to water and N co-limitation.


Coevolution in Hybrid Genomes: Nuclear-Encoded Rubisco Small Subunits and Their Plastid-Targeting Translocons Accompanying Sequential Allopolyploidy Events in Triticum.

  • Changping Li‎ et al.
  • Molecular biology and evolution‎
  • 2020‎

The Triticum/Aegilops complex includes hybrid species resulting from homoploid hybrid speciation and allopolyploid speciation. Sequential allotetra- and allohexaploidy events presumably result in two challenges for the hybrids, which involve 1) cytonuclear stoichiometric disruptions caused by combining two diverged nuclear genomes with the maternal inheritance of the cytoplasmic organellar donor; and 2) incompatibility of chimeric protein complexes with diverged subunits from nuclear and cytoplasmic genomes. Here, we describe coevolution of nuclear rbcS genes encoding the small subunits of Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) and nuclear genes encoding plastid translocons, which mediate recognition and translocation of nuclear-encoded proteins into plastids, in allopolyploid wheat species. We demonstrate that intergenomic paternal-to-maternal gene conversion specifically occurred in the genic region of the homoeologous rbcS3 gene from the D-genome progenitor of wheat (abbreviated as rbcS3D) such that it encodes a maternal-like or B-subgenome-like SSU3D transit peptide in allohexaploid wheat but not in allotetraploid wheat. Divergent and limited interaction between SSU3D and the D-subgenomic TOC90D translocon subunit is implicated to underpin SSU3D targeting into the chloroplast of hexaploid wheat. This implicates early selection favoring individuals harboring optimal maternal-like organellar SSU3D targeting in hexaploid wheat. These data represent a novel dimension of cytonuclear evolution mediated by organellar targeting and transportation of nuclear proteins.


The benefits of radioactive iodine ablation for patients with intermediate-risk papillary thyroid cancer.

  • Xiaofei Wang‎ et al.
  • PloS one‎
  • 2020‎

The beneficial effects of radioactive iodine (RAI) ablation for intermediate-risk papillary thyroid cancer (PTC) patients are still controversial.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: