Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 47 papers

MicroRNA-125b modulates inflammatory chemokine CCL4 expression in immune cells and its reduction causes CCL4 increase with age.

  • Nai-Lin Cheng‎ et al.
  • Aging cell‎
  • 2015‎

Chemokines play a pivotal role in regulating the immune response through a tightly controlled expression. Elevated levels of inflammatory chemokines commonly occur with aging but the mechanism underlying this age-associated change is not fully understood. Here, we report the role of microRNA-125b (miR-125b) in regulating inflammatory CC chemokine 4 (CCL4) expression in human immune cells and its altered expression with aging. We first analyzed the mRNA level of CCL4 in eight different types of immune cells including CD4 and CD8 T-cell subsets (naïve, central and effector memory), B cells and monocytes in blood from both young (≤42 years) and old (≥70 years) adults. We observed that monocytes and naïve CD8 T cells expressed higher levels of CCL4 and exhibited an age-related increase in CCL4. We then found the level of miR-125b was inversely correlated with the level of CCL4 in these cells, and the level of miR-125b was reduced in monocytes and naïve CD8 T cells of the old compared to the young adults. Knock-down of miR-125b by shRNA in monocytes and naïve CD8 T cells led to an increase of CCL4 protein, whereas enhanced miR-125b expression by transfection in naïve CD8 T cells resulted in a reduction of the CCL4 mRNA and protein in response to stimulation. Finally, we demonstrated that miR-125b action requires the 'seed' sequence in 3'UTR of CCL4. Together these findings demonstrated that miR-125b is a negative regulator of CCL4 and its reduction is partially responsible for the age-related increase of CCL4.


Distinct and Dynamic ON and OFF Neural Ensembles in the Prefrontal Cortex Code Social Exploration.

  • Bo Liang‎ et al.
  • Neuron‎
  • 2018‎

The medial prefrontal cortex (mPFC) is important for social behavior, but the mechanisms by which mPFC neurons code real-time social exploration remain largely unknown. Here we utilized miniScopes to record calcium activities from hundreds of excitatory neurons in the mPFC while mice freely explored restrained social targets in the absence or presence of the psychedelic drug phencyclidine (PCP). We identified distinct and dynamic ON and OFF neural ensembles that displayed opposing activities to code real-time behavioral information. We further illustrated that ON and OFF ensembles tuned to social exploration carried information of salience and novelty for social targets. Finally, we showed that dysfunctions in these ensembles were associated with abnormal social exploration elicited by PCP. Our findings underscore the importance of mPFC ON and OFF neural ensembles for proper exploratory behavior, including social exploration, and pave the way for future studies elucidating neural circuit dysfunctions in psychiatric disorders.


Metformin alleviates the depression-like behaviors of elderly apoE4 mice via improving glucose metabolism and mitochondrial biogenesis.

  • Yingbin Lin‎ et al.
  • Behavioural brain research‎
  • 2022‎

Apolipoprotein E4 (apoE4) is closely related to late-onset depression (LOD). In addition, the benefits of metformin treatment of depression have been documented in a range of rodent studies and human trials, but few studies have probed into the effect of metformin on and the related mechanism in depressed elderly mice, especially in those APOE4 carriers. Here, we treated 13-month-old apoE3-targeted replacement (TR) and apoE4-TR mice with an intragastric administration of metformin (300 mg/kg/d) or normal saline for 5 months. We found that metformin exerted antidepressant effects on apoE4 mice, including reduced immobility time in TST and FST, and increased ratios of time and distance in the central area of OFT. Importantly, compared with apoE3 mice, apoE4 mice showed a higher expression of lactate dehydrogenase (LDH) and pyruvate dehydrogenase kinase (PDK1 and PDK4) in the hippocampus. The increased LDH level was rescued by metformin treatment. Moreover, the metformin administration increased the levels of transcriptional factor NRF-1 and TFAM, mtDNA, and most mitochondrial complex subunits in apoE-TR mice. Furthermore, it upregulated the expressions of antioxidant enzymes, such as MnSOD, GPX1, and GSR1/2. Interestingly, apoE4 blunted the hypoglycemic effect of metformin in aged mice. These data suggest that metformin ameliorates the depression-like behaviors probably by improving glucose metabolism and mitochondria biogenesis in the hippocampus of aged apoE4 mice. These findings imply that chronic metformin treatment can improve apoE4-mediated LOD, providing mechanistic insights for apoE4- and age-based depression prevention and therapy.


Comparative Efficacy and Safety of Dopamine Agonists in Advanced Parkinson's Disease With Motor Fluctuations: A Systematic Review and Network Meta-Analysis of Double-Blind Randomized Controlled Trials.

  • Xinglin Ruan‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Background: Movement fluctuations are the main complication of Parkinson's disease (PD) patients receiving long-term levodopa (L-dopa) treatment. We compared and ranked the efficacy and safety of dopamine agonists (DAs) with regard to motor fluctuations by using a Bayesian network meta-analysis (NMA) to quantify information from randomized controlled trials (RCTs). Methods and Findings: We carried out a systematic review and meta-analysis, and only RCTs comparing DAs for advanced PD were included. Electronic databases (PubMed, Embase, and Cochrane Library) were systematically searched for relevant studies published until January 2021. Two reviewers independently extracted individual study data and evaluated studies for risk of bias using the Cochrane Risk of Bias tool. Network meta-analyses using a Bayesian framework were used to calculate the related parameters. The pre-specified primary and secondary outcomes were efficacy ("ON" time without troublesome dyskinesia, "OFF" time, "ON" time, "UPDRS-III," and "UPDRS-II") and safety [treatment-emergent adverse events (TEAE) and other adverse events] of DAs. The results are presented as the surface under the cumulative ranking (SUCRA) curve. A total of 20 RCTs assessing 6,560 patients were included. The general DA effects were ranked from high to low with respect to the amount of "ON" time without troublesome dyskinesia as follows: apomorphine (SUCRA = 97.08%), pramipexole_IR (probability = 79.00%), and ropinirole_PR (SUCRA = 63.92%). The general safety of DAs was ranked from high to low with respect to TEAE as follows: placebo (SUCRA = 74.49%), pramipexole_ER (SUCRA = 63.6%), sumanirole (SUCRA = 54.07%), and rotigotine (SUCRA = 53.84%). Conclusions: This network meta-analysis shows that apomorphine increased "ON" time without troublesome dyskinesia and decreased "OF" time for advanced PD patients. The addition of pramipexole, ropinirole, or rotigotine to levodopa treatment in advanced PD patients with motor fluctuations increased "ON" time without troublesome dyskinesia, improved the UPDRS III scores, and ultimately ameliorated the UPDRS II scores, thereby maximizing its benefit. This NMA of pramipexole, ropinirole, and rotigotine represents an effective treatment option and has an acceptable safety profile in patients with advanced PD.


Increased Salivary microRNAs That Regulate DJ-1 Gene Expression as Potential Markers for Parkinson's Disease.

  • Yanmei Chen‎ et al.
  • Frontiers in aging neuroscience‎
  • 2020‎

Small molecule RNAs (microRNAs) are a kind of endogenous, stable, and noncoding RNA molecule that can regulate the expression of target genes such as DJ-1 at the posttranscriptional level. This study aimed to detect the expression of salivary microRNAs and to discover their value as a salivary potential biomarker for Parkinson's disease (PD). Through a case-control study, RT-qPCR technology was used to detect the expression of miR-874 and miR-145-3p in the saliva of 30 PD patients and 30 healthy volunteers. Then we compared the differences in the expression levels of salivary miR-874 and miR-145-3p between the PD group and the control group and analyzed the correlation between the expression of salivary miR-874 and miR-145-3p in terms of age, gender, disease condition, and disease course. We found that salivary miR-874 and miR-145-3p were both positively expressed in the PD group and control group, and their expression in the PD group was higher than that in the control group. The expression of salivary miRNA-874 and miR-145-3p had no clear correlation to age, gender, total RNA concentrations in saliva, the score of UPDRSII, UPDRSIII, olfactory test scale, MMSE, MoCA, Hohn-Yahr stage and disease course. In conclusion, in the PD group and the control group with positive expression, the expression levels of miR-874 and miR-145-3p in the PD group were higher than those in the control group. The detection of miR-874 and miR-145-3p expression in saliva can be used as an auxiliary biomarker for PD.


A Moderate Duration of Stress Promotes Behavioral Adaptation and Spatial Memory in Young C57BL/6J Mice.

  • Lanyan Lin‎ et al.
  • Brain sciences‎
  • 2022‎

Stress may serve multiple roles in cerebral functioning, ranging from a highly appropriate behavioral adaptation to a critical risk factor for susceptibility to mood disorder and cognitive impairment. It is well known that E/I (excitation/inhibition) balance is essential for maintaining brain homeostasis. However, it remains largely unknown how GABAergic and Glutamatergic neurons respond to different stressful stimuli and whether the GABAergic-Glutamatergic neuron balance is related to the transition between adaptive and maladaptive behaviors. Here, we subjected 3-month-old mice to chronic mild stress (CMS) for a period of one, two, and four weeks, respectively. The results showed that the two-week CMS procedure produced adaptive effects on behaviors and cognitive performance, with a higher number of GABAergic neuron and VGluT1-positive neurons, increasing the expressions of p-GluN2B, Reelin, and syn-PSD-95 protein in the hippocampus. In contrast, the prolonged behavioral challenge (4 week) imposes a passive coping behavioral strategy and cognitive impairment, decreased the number of GABAergic neuron, hyperactivity of VGluT1-positive neuron, increased the ratio of p-GluN2B, and decreased the expression of Reelin, syn-PSD-95 in the hippocampus. These findings suggest that a moderate duration of stress probably promotes behavioral adaptation and spatial memory by maintaining a GABAergic-Glutamatergic neuron balance and promoting the expression of synaptic plasticity-related proteins in the brain.


Identification of a Pyroptosis-Related Gene Signature for Predicting Overall Survival and Response to Immunotherapy in Hepatocellular Carcinoma.

  • Susu Zheng‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Pyroptosis is a novel kind of cellular necrosis and shown to be involved in cancer progression. However, the diverse expression, prognosis and associations with immune status of pyroptosis-related genes in Hepatocellular carcinoma (HCC) have yet to be analyzed. Herein, the expression profiles and corresponding clinical characteristics of HCC samples were collected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then a pyroptosis-related gene signature was built by applying the least absolute shrinkage and selection operator (LASSO) Cox regression model from the TCGA cohort, while the GEO datasets were applied for verification. Twenty-four pyroptosis-related genes were found to be differentially expressed between HCC and normal samples. A five pyroptosis-related gene signature (GSDME, CASP8, SCAF11, NOD2, CASP6) was constructed according to LASSO Cox regression model. Patients in the low-risk group had better survival rates than those in the high-risk group. The risk score was proved to be an independent prognostic factor for overall survival (OS). The risk score correlated with immune infiltrations and immunotherapy responses. GSEA indicated that endocytosis, ubiquitin mediated proteolysis and regulation of autophagy were enriched in the high-risk group, while drug metabolism cytochrome P450 and tryptophan metabolism were enriched in the low-risk group. In conclusion, our pyroptosis-related gene signature can be used for survival prediction and may also predict the response of immunotherapy.


Prediction of Alzheimer's Disease Using Patterns of Methylation Levels in Key Immunologic-Related Genes.

  • Junhan Lin‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2022‎

DNA methylation is expected to become a kind of new diagnosis and treatment method of Alzheimer's disease (AD). Neuroinflammation- and immune-related pathways represent one of the major genetic risk factors for AD.


ApoE4 exacerbates the senescence of hippocampal neurons and spatial cognitive impairment by downregulating acetyl-CoA level.

  • Shuixin Lv‎ et al.
  • Aging cell‎
  • 2023‎

Although aging and apolipoprotein E (APOE) ε4 allele have been documented as two major risk factors for late-onset Alzheimer's disease (LOAD), their interaction and potential underlying mechanisms remain unelucidated. Using humanized ApoE4- and ApoE3- target replacement mice, we found the accumulation of senescent neurons and the activation of mTOR and endosome-lysosome-autophagy (ELA) system in the hippocampus of aged ApoE4 mice. Further analyses revealed that ApoE4 aggravated the profile change of hippocampal transcription and metabolism in an age-dependent manner, accompanying with an disruption of metabolism, which is presented with the downregulating activity of citrate synthase, the level of ATP and, most importantly, the level of acetyl coenzyme A (Ac-CoA); GTA supplement, an Ac-CoA substrate, reversed the senescent characteristics, decreased the activation of mTOR and ELA system, and enhanced the synaptic structure and increasing level of pre-/post-synaptic plasticity-related protein, leading to cognitive improvement in aged ApoE4 mice. These data suggest that ApoE4 exacerbates neuronal senescence due to a deficiency of acetyl-CoA, which can be ameliorated by GTA supplement. The findings provide novel insights into the potential therapeutic value of GTA supplement for the cognitive improvement in aged APOE4 carriers.


Genome Sequence of Candida tropicalis no. 121, Used for RNA Production.

  • Bingbing Li‎ et al.
  • Genome announcements‎
  • 2014‎

We report here the complete genome sequence of Candida tropicalis no. 121. C. tropicalis no. 121 is a high-RNA-producing strain obtained by mutagenesis in our laboratory. The complete genome sequence was determined using the Illumina HiSeq 2000 and contains 6,415 genes. The genome size of C. tropicalis no. 121 is >15.3 Mb.


Mitochondrial Effects of PGC-1alpha Silencing in MPP+ Treated Human SH-SY5Y Neuroblastoma Cells.

  • Qinyong Ye‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2017‎

The dopaminergic neuron degeneration and loss that occurs in Parkinson's disease (PD) has been tightly linked to mitochondrial dysfunction. Although the aged-related cause of the mitochondrial defect observed in PD patients remains unclear, nuclear genes are of potential importance to mitochondrial function. Human peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) is a multi-functional transcription factor that tightly regulates mitochondrial biogenesis and oxidative capacity. The goal of the present study was to explore the potential pathogenic effects of interference by the PGC-1α gene on N-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cells. We utilized RNA interference (RNAi) technology to probe the pathogenic consequences of inhibiting PGC-1α in the SH-SY5Y cell line. Remarkably, a reduction in PGC-1α resulted in the reduction of mitochondrial membrane potential, intracellular ATP content and intracellular H2O2 generation, leading to the translocation of cytochrome c (cyt c) to the cytoplasm in the MPP+-induced PD cell model. The expression of related proteins in the signaling pathway (e.g., estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), NRF-2 and Peroxisome proliferator-activated receptor γ (PPARγ)) also decreased. Our finding indicates that small interfering RNA (siRNA) interference targeting the PGC-1α gene could inhibit the function of mitochondria in several capacities and that the PGC-1α gene may modulate mitochondrial function by regulating the expression of ERRα, NRF-1, NRF-2 and PPARγ. Thus, PGC-1α can be considered a potential therapeutic target for PD.


TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function.

  • Yingjun Zhao‎ et al.
  • Neuron‎
  • 2018‎

Mutations in triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to increased Alzheimer's disease (AD) risk. Neurobiological functions of TREM2 and its pathophysiological ligands remain elusive. Here we found that TREM2 directly binds to β-amyloid (Aβ) oligomers with nanomolar affinity, whereas AD-associated TREM2 mutations reduce Aβ binding. TREM2 deficiency impairs Aβ degradation in primary microglial culture and mouse brain. Aβ-induced microglial depolarization, K+ inward current induction, cytokine expression and secretion, migration, proliferation, apoptosis, and morphological changes are dependent on TREM2. In addition, TREM2 interaction with its signaling adaptor DAP12 is enhanced by Aβ, regulating downstream phosphorylation of SYK and GSK3β. Our data demonstrate TREM2 as a microglial Aβ receptor transducing physiological and AD-related pathological effects associated with Aβ.


Astaxanthin protects against MPP(+)-induced oxidative stress in PC12 cells via the HO-1/NOX2 axis.

  • Qinyong Ye‎ et al.
  • BMC neuroscience‎
  • 2012‎

Although the etiology of PD remains unclear, increasing evidence has shown that oxidative stress plays an important role in its pathogenesis and that of other neurodegenerative disorders. NOX2, a cytochrome subunit of NOX, transports electrons across the plasma membrane to generate ROS, leading to physiological and pathological processes. Heme oxygenase-1 (HO-1) can be rapidly induced by oxidative stress and other noxious stimuli in the brain or other tissues. Astaxanthin (ATX), a carotenoid with antioxidant properties, is 100-1000 times more effective than vitamin E. The present study investigated the neuroprotective effects of ATX on MPP(+)-induced oxidative stress in PC12 cells.


Astaxanthin suppresses MPP(+)-induced oxidative damage in PC12 cells through a Sp1/NR1 signaling pathway.

  • Qinyong Ye‎ et al.
  • Marine drugs‎
  • 2013‎

To investigate astaxanthin (ATX) neuroprotection, and its mechanism, on a 1-methyl-4-phenyl-pyridine ion (MPP+)-induced cell model of Parkinson's disease.


Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway.

  • Qinyong Ye‎ et al.
  • BMC complementary and alternative medicine‎
  • 2012‎

Parkinson's disease is a high incidence neurodegenerative disease in elderly people, and oxidative stress plays an important role in the pathogenesis. Oxygen metabolism in the brain is high, which lacks an antioxidative protection mechanism. Recently, it has been found that polyphenols play an important role in antioxidation. (-)-epigallocatechin-3-gallate (EGCG) is an important component of tea polyphenols and its biological effects, such as strong antioxidation, scavenging of free radicals and anti-apoptosis, can pass through the blood brain barrier. The SIRT1/PGC-1α signaling pathway has not been reported in PC12 cells. Therefore, research of the protective mechanism of EGCG in PC12 cells damaged by -methyl-4-phenyl-pyridine (MMP+) may provide a new insight into protect against and treatment of Parkinson's disease.


Increased Notch2/NF-κB Signaling May Mediate the Depression Susceptibility: Evidence from Chronic Social Defeat Stress Mice and WKY Rats.

  • Jiangfeng Liao‎ et al.
  • Physiology & behavior‎
  • 2021‎

The susceptibility to depression has been attributed to the chronic stress and genetic factors but still fails to identify definite biomarkers. The present study aimed to investigate the role of disrupted Notch signaling in the medial prefrontal cortex of the chronic social defeat stress (CSDS) mice and Wistar Kyoto (WKY) rats. RNA-sequencing and quantitative real-time PCR analyses evidenced the involvement of Notch signaling pathway in depression. Western blotting reported an increased level of Notch2 and NF-κB and a decreased level of Hes1 and Bcl2/Bax ratio both in the susceptible mice when compared with the control or resilient ones and in the depression WKY rats when compared with the Wistar or non-depression WKY groups. Further analysis showed that the above-mentioned changes were significantly correlated with the depression-like behaviors and that the elicited Notch2 strongly correlated with the upregulated NF-κB, not with the downregulated Hes1 or Bcl2/Bax ratio. In conclusion, the increased Notch2/NF-κB signaling in the medial prefrontal cortex may mediate depression susceptibility, providing a potential diagnostic biomarker or therapeutic target for treating major depressive disorder.


18F-Labelled pyrrolopyrimidines reveal brain leucine-rich repeat kinase 2 expression implicated in Parkinson's disease.

  • Xueyuan Chen‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

18F-Labelled pyrrolopyrimidines were synthesized and evaluated as positron emission tomography (PET) probes to determine leucine-rich repeat kinase 2 (LRRK2) expression in the brain. With pyrrolopyrimidine derivative PF-06447475 as the lead compound, two in vivo-stable 18F-labelled pyrrolopyrimidines ([18F]1 and [18F]2) were synthesized automatically at radiochemical yields 8-10% (non-decay-corrected) with molar activities of 0.95 and 0.5 GBq/μmol, respectively. The measured Kd of 6.90 nM for 1 and 14.27 nM for 2 demonstrated high affinities for LRRK2. The LRRK2 G2019S mice had higher uptakes (P < 0.01) of [18F]1 in the olfactory bulb, striatum, and hippocampus than WT mice during microPET/CT imaging, consistent with immunohistology results of LRRK2 distribution. [11C]CFT microPET/CT imaging demonstrated a lower expression of dopamine transporter in LRRK2 G2019S mice. Parkinson's disease-like deficits in dopamine transporter synthesis and cognitive declines were noticed along with LRRK2 expression increase in the olfactory bulb, striatum, and hippocampus. Therefore, 18F-labelled pyrrolopyrimidines can reflect real-time LRRK2 expression changes implicated in Parkinson's disease, which paves the way for LRRK2-related neurodegenerative precise therapy.


CX3C-chemokine receptor 1 modulates cognitive dysfunction induced by sleep deprivation.

  • Jiawei Xin‎ et al.
  • Chinese medical journal‎
  • 2021‎

Microglia plays an indispensable role in the pathological process of sleep deprivation (SD). Here, the potential role of microglial CX3C-chemokine receptor 1 (CX3CR1) in modulating the cognition decline during SD was evaluated in terms of microglial neuroinflammation and synaptic pruning. In this study, we aimed to investigat whether the interference in the microglial function by the CX3CR1 knockout affects the CNS's response to SD.


Overexpression of PGC-1α influences the mitochondrial unfolded protein response (mtUPR) induced by MPP+ in human SH-SY5Y neuroblastoma cells.

  • Yousheng Cai‎ et al.
  • Scientific reports‎
  • 2020‎

Parkinson's disease (PD) is a common dyskinesia disease, the mitochondrial unfolded protein response (mtUPR) may be directly or indirectly involved in the occurrence and development of PD, although the exact mechanism is unclear. We established a dopaminergic neuronal-like cell model of PD, by overexpression of PGC-1α to detect evaluate the expression of proteases and molecular chaperones of involved in the mtUPR, as well as the expression of PGC-1α and LRPPRC, illustrated the distribution of LRPPRC. Remarkably, the mtUPR activation reached maximal at 24 h after MPP+ treatment in SH-SY5Y cells, which the protein and transcription levels of the proteases and molecular chaperones reached maximal. The proteases and molecular chaperones were significantly increased when overexpressed PGC-1α, which indicated that PGC-1α overexpression activated the mtUPR, and PGC-1α had a protective effect on SH-SY5Y cells. The expression levels of PGC-1α and LRPPRC were significantly improved in the PGC-1α overexpression groups. LRPPRC was markedly reduced in the nucleus, suggesting that PGC-1α overexpression may play a protective role to the mitochondria through LRPPRC. Our finding indicates that overexpression of PGC-1α may activate mtUPR, reducing the oxidative stress injury induced by MPP+ through LRPPRC signaling, thus maintain mitochondrial homeostasis.


Fbxo7 and Pink1 play a reciprocal role in regulating their protein levels.

  • Tianwen Huang‎ et al.
  • Aging‎
  • 2020‎

Pink1, Parkin and Fbxo7, three autosomal recessive familial genes of Parkinson's disease (PD), have been implicated in mitophagy pathways for quality control and clearance of damaged mitochondria, but the interplay of these three genes still remains unclear. Here we present that Fbxo7 and Pink1 play a reciprocal role in the regulation of their protein levels. Regardless of the genotypes of Fbxo7, the wild type and the PD familial mutants of Fbxo7 stabilize the processed form of Pink1, supporting the prior study that none of the PD familial mutations in Fbxo7 have an effect on the interaction with Pink1. On the other hand, the interaction of Fbxo7 with Bag2 further facilitates its capability to stabilize Pink1. Intriguingly, the stabilization of Fbxo7 by Pink1 is specifically observed in substantial nigra pars compacta but striatum and cerebral cortex. Taken together, our findings support the notion that Fbxo7 as a scaffold protein has a chaperon activity in the stabilization of proteins.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: