Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson's disease.

  • Xianting Li‎ et al.
  • PloS one‎
  • 2011‎

Recent studies show that mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are the cause of the most common inherited and some sporadic forms of Parkinson's disease (PD). The molecular mechanism underlying the pathogenic role of LRRK2 mutations in PD remains unknown.


Parkinson's Disease-Associated LRRK2 Hyperactive Kinase Mutant Disrupts Synaptic Vesicle Trafficking in Ventral Midbrain Neurons.

  • Ping-Yue Pan‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Parkinson's disease (PD) is characterized pathologically by the selective loss of substantia nigra (SN) dopaminergic (DAergic) neurons. Recent evidence has suggested a role of LRRK2, linked to the most frequent familial PD, in regulating synaptic vesicle (SV) trafficking. However, the mechanism whereby LRRK2 mutants contribute to nigral vulnerability remains unclear. Here we show that the most common PD mutation LRRK2 G2019S impairs SV endocytosis in ventral midbrain (MB) neurons, including DA neurons, and the slowed endocytosis can be rescued by inhibition of LRRK2 kinase activity. A similar endocytic defect, however, was not observed in LRRK2 mutant neurons from the neocortex (hereafter, cortical neurons) or the hippocampus, suggesting a brain region-specific vulnerability to the G2019S mutation. Additionally, we found MB-specific impairment of SV endocytosis in neurons carrying heterozygous deletion of SYNJ1 (PARK20), a gene that is associated with recessive Parkinsonism. Combining SYNJ1+/- and LRRK2 G2019S does not exacerbate SV endocytosis but impairs sustained exocytosis in MB neurons and alters specific motor functions of 1-year-old male mice. Interestingly, we show that LRRK2 directly phosphorylates synaptojanin1 in vitro, resulting in the disruption of endophilin-synaptojanin1 interaction required for SV endocytosis. Our work suggests a merge of LRRK2 and SYNJ1 pathogenic pathways in deregulating SV trafficking in MB neurons as an underlying molecular mechanism of early PD pathogenesis.SIGNIFICANCE STATEMENT Understanding midbrain dopaminergic (DAergic) neuron-selective vulnerability in PD is essential for the development of targeted therapeutics. We report, for the first time, a nerve terminal impairment in SV trafficking selectively in MB neurons but not cortical neurons caused by two PARK genes: LRRK2 (PARK8) and SYNJ1 (PARK20). We demonstrate that the enhanced kinase activity resulting from the most frequent G2019S mutation in LRRK2 is the key to this impairment. We provide evidence suggesting that LRRK2 G2019S and SYNJ1 loss of function share a similar pathogenic pathway in deregulating DAergic neuron SV endocytosis and that they play additive roles in facilitating each other's pathogenic functions in PD.


Efficacy and Safety of One Anastomosis Gastric Bypass Versus Roux-en-Y Gastric Bypass for Obesity: a Meta-analysis and Systematic Review.

  • Xianting Li‎ et al.
  • Obesity surgery‎
  • 2023‎

The objective of this review is to systematically review the efficacy and safety outcomes of one anastomosis gastric bypass (OAGB) with Roux-en-Y gastric bypass (RYGB). From inception to July 4, 2022, a systematic literature search was performed using PubMed, Embase, and Cochrane Library for randomized clinical trials comparing OAGB with RYGB in obesity. A meta-analysis performed using the RevMan 5.4.1 software evaluations was completed. We identified 1217 reports; after exclusions, eight trials with a total of 931 patients were eligible for analysis. Compared with RYGB, OAGB had multiple advantageous indexes. Examples include percent of excess weight loss (%EWL) at 12 months (P = 0.009), body mass index (BMI) at 2 years (P < 0.00001), early postoperative complication (P = 0.04), remission of dyslipidemia (P < 0.0001), and operative time (P < 0.00001). No significant statistical difference was observed in BMI at 6 months, %EWL at 6 months, BMI at 12 months, percent of excess body mass index loss (%EBMIL) at 2 years, BMI at 5 years, intraoperative complications, late postoperative complications, remission of type 2 diabetes mellitus, and dyslipidemia or gastroesophageal reflux disease remission between OAGB and RYGB. OAGB is no less effective than RYGB; no significant differences in weight loss efficacy were observed, and more large and long-term randomized controlled trials are needed to verify this. In addition, studies have shown that OAGB has a shorter operation time, fewer early postoperative complications, and a shorter learning curve, making it easier for young surgeons to perform.


COVID-19 transmission in the first presidential debate in 2020.

  • Xiaoliang Shao‎ et al.
  • Physics of fluids (Woodbury, N.Y. : 1994)‎
  • 2020‎

The infection risks of Biden, Wallace, and the audience by Trump and the first lady were assessed during the first presidential debate. The debate scene was established numerically, and two cases, i.e., only Trump being infected and both Trump and the first lady being infected, were set up for risk analysis. The infection probabilities at different positions were assessed by using the Wells-Riley equation with consideration of the effects of air distribution and face mask. It was concluded that (1) the infection risks of Biden and Wallace were lower due to the reasonable distance from Trump, with the maximum probability of 0.34% at 40 quanta/h for both Trump and the first lady being infected; (2) the infection probabilities in the audience area were lower for the long distance from the debate stage, with the maximum probability of 0.35%. Wearing masks resulted in a notable decrease in the infection probability to 0.09%; and (3) there was a certain local area surrounding Trump and the first lady with a relatively greater infection probability. The preliminary analysis provides some reference for protection of the next presidential debate and other public events.


A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects.

  • Jinglan Zhang‎ et al.
  • PLoS genetics‎
  • 2016‎

Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway.


Overexpression of chemokine-like factor 2 promotes the proliferation and survival of C2C12 skeletal muscle cells.

  • Donglan Xia‎ et al.
  • Biochimica et biophysica acta‎
  • 2002‎

Chemokine-like factor 1 (CKLF1) is a novel cytokine first cloned from U937 cells. It contains different splicing forms and has chemotactic effects on a wide spectrum of cells both in vitro and in vivo; it can also stimulate the regeneration of skeletal muscle cells in vivo, but the mechanism remains unclear. To probe the myogenesis function of CKLF2, which is the largest isoform of CKLFs, C2C12 murine myoblasts were stably transfected with human CKLF2 eukaryotic expression vector. Compared with control vector transfected C2C12 cells, CKLF2 overexpression causes accelerated myoblast proliferation as determined by cell counting and [(3)H]TdR incorporation assays. In addition, CKLF2 overexpression also promotes cell differentiation, which was determined by higher expression levels of myogenin, creatine kinase, myosin and the accelerated myoblast fusion. Further analysis also indicates that CKLF2 could activate the transcription activity of the bHLH/MyoD and MEF2 families. Finally, DNA synthesis and myotube formation could also be promoted by growing C2C12 cells in conditioned media from CKLF2-transfected cells. These findings strongly suggest a role for human CKLF2 in regulation of skeletal muscle myogenesis.


Short- and long-term effects of LRRK2 on axon and dendrite growth.

  • Bryan Sepulveda‎ et al.
  • PloS one‎
  • 2013‎

Mutations in leucine-rich repeat kinase 2 (LRRK2) underlie an autosomal-dominant form of Parkinson's disease (PD) that is clinically indistinguishable from idiopathic PD. The function of LRRK2 is not well understood, but it has become widely accepted that LRRK2 levels or its kinase activity, which is increased by the most commonly observed mutation (G2019S), regulate neurite growth. However, growth has not been measured; it is not known whether mean differences in length correspond to altered rates of growth or retraction, whether axons or dendrites are impacted differentially or whether effects observed are transient or sustained. To address these questions, we compared several developmental milestones in neurons cultured from mice expressing bacterial artificial chromosome transgenes encoding mouse wildtype-LRRK2 or mutant LRRK2-G2019S, Lrrk2 knockout mice and non-transgenic mice. Over the course of three weeks of development on laminin, the data show a sustained, negative effect of LRRK2-G2019S on dendritic growth and arborization, but counter to expectation, dendrites from Lrrk2 knockout mice do not elaborate more rapidly. In contrast, young neurons cultured on a slower growth substrate, poly-L-lysine, show significantly reduced axonal and dendritic motility in Lrrk2 transgenic neurons and significantly increased motility in Lrrk2 knockout neurons with no significant changes in length. Our findings support that LRRK2 can regulate patterns of axonal and dendritic growth, but they also show that effects vary depending on growth substrate and stage of development. Such predictable changes in motility can be exploited in LRRK2 bioassays and guide exploration of LRRK2 function in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: