Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 90 papers

Serotonergic mechanism of the relieving effect of bee venom acupuncture on oxaliplatin-induced neuropathic cold allodynia in rats.

  • Ji-Hye Lee‎ et al.
  • BMC complementary and alternative medicine‎
  • 2014‎

Oxaliplatin, an important chemotherapy drug for advanced colorectal cancer, often induces peripheral neuropathy, especially cold allodynia. Our previous study showed that bee venom acupuncture (BVA), which has been traditionally used in Korea to treat various pain symptoms, potently relieves oxaliplatin-induced cold allodynia in rats. However, the mechanism for this anti-allodynic effect of BVA remains poorly understood. We investigated whether and how the central serotonergic system, a well-known pathway for acupuncture analgesia, mediates the relieving effect of BVA on cold allodynia in oxaliplatin-injected rats.


Anti-allodynic effect of Buja in a rat model of oxaliplatin-induced peripheral neuropathy via spinal astrocytes and pro-inflammatory cytokines suppression.

  • Yongjae Jung‎ et al.
  • BMC complementary and alternative medicine‎
  • 2017‎

Oxaliplatin, a widely used anticancer drug against metastatic colorectal cancer, can induce acute peripheral neuropathy, which is characterized by cold and mechanical allodynia. Activation of glial cells (e.g. astrocytes and microglia) and increase of pro-inflammatory cytokines (e.g. IL-1β and TNF-α) in the spinal cord play a crucial role in the pathogenesis of neuropathic pain. Our previous study demonstrated that Gyejigachulbu-Tang (GBT), a herbal complex formula, alleviates oxaliplatin-induced neuropathic pain in rats by suppressing spinal glial activation. However, it remains to be elucidated whether and how Buja (Aconiti Tuber), a major ingredient of GBT, is involved in the efficacy of GBT.


Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer.

  • Woojin Kim‎ et al.
  • Nature chemical biology‎
  • 2013‎

Enhancer of zeste homolog 2 (EZH2) is the histone lysine N-methyltransferase component of the Polycomb repressive complex 2 (PRC2), which, in conjunction with embryonic ectoderm development (EED) and suppressor of zeste 12 homolog, regulates cell lineage determination and homeostasis. Enzymatic hyperactivity has been linked to aberrant repression of tumor suppressor genes in diverse cancers. Here, we report the development of stabilized α-helix of EZH2 (SAH-EZH2) peptides that selectively inhibit H3 Lys27 trimethylation by dose-responsively disrupting the EZH2-EED complex and reducing EZH2 protein levels, a mechanism distinct from that reported for small-molecule EZH2 inhibitors targeting the enzyme catalytic domain. MLL-AF9 leukemia cells, which are dependent on PRC2, undergo growth arrest and monocyte-macrophage differentiation upon treatment with SAH-EZH2, consistent with observed changes in expression of PRC2-regulated, lineage-specific marker genes. Thus, by dissociating the EZH2-EED complex, we pharmacologically modulate an epigenetic 'writer' and suppress PRC2-dependent cancer cell growth.


PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells.

  • Partha Pratim Das‎ et al.
  • Cell reports‎
  • 2015‎

Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2, the entire locus becomes transcriptionally repressed due to gain of DNAme at the intergenic differentially methylated regions (IG-DMRs). Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Further analysis reveals that PRC2 interacts physically with Dnmt3 methyltransferases and reduces recruitment to and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations are consistent with a mechanism through which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency.


Magnoliae Cortex Alleviates Muscle Wasting by Modulating M2 Macrophages in a Cisplatin-Induced Sarcopenia Mouse Model.

  • Minwoo Hong‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Cachexia causes high mortality, low quality of life, and rapid weight loss in cancer patients. Sarcopenia, a condition characterized by the loss of muscle, is generally present in cachexia and is associated with inflammation. M2 macrophages, also known as an anti-inflammatory or alternatively activated macrophages, have been shown to play a role in muscle repair. Magnoliae Cortex (M.C) is a widely used medicinal herb in East Asia reported to have a broad range of anti-inflammatory activities; however, the effects of M.C on sarcopenia and on M2 macrophage polarization have to date not been studied. This study was designed to investigate whether the oral administration of M.C could decrease cisplatin-induced sarcopenia by modulating M2 macrophage polarization in mice. C57BL/6 mice were injected intraperitoneally with cisplatin (2.5 mg/kg) to mimic chemotherapy-induced sarcopenia. M.C extract (50, 100, and 200 mg/kg) was administered orally every 3 days (for a total of 12 times). M.C (100 and 200 mg/kg) significantly alleviated the cisplatin-induced loss of body mass, skeletal muscle weight, and grip strength. In addition, M.C increased the expression of M2 macrophage markers, such as MRC1, CD163, TGF-β, and Arg-1, and decreased the expression of M1-specific markers, including NOS2 and TNF-α, in skeletal muscle. Furthermore, the levels of like growth factor-1(IGF-1), as well as the number of M2a and M2c macrophages, significantly increased in skeletal muscle after M.C administration. M.C did not interfere with the anticancer effect of cisplatin in colon cancer. Our results demonstrated that M.C can alleviate cisplatin-induced sarcopenia by increasing the number of M2 macrophages. Therefore, our findings suggest that M.C could be used as an effective therapeutic agent to reverse or prevent cisplatin-induced sarcopenia.


Disruption of Membrane Integrity as a Molecular Initiating Event Determines the Toxicity of Polyhexamethylene Guanidine Phosphate Depending on the Routes of Exposure.

  • Jeongah Song‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Polyhexamethylene guanidine phosphate (PHMG-P), a cationic biocide, is widely used in household products due to its strong bactericidal activity and low toxicity. However, it causes fatal lung damage when inhaled. In this study, we investigated why PHMG-P causes fatal lung injury when inhaled, and demonstrated that the disruption of membrane integrity through ionic interaction-a molecular initiating event of PHMG-P-determines toxicity. Mice were injected intravenously with 0.9 or 7.2 mg/kg PHMG-P (IV group), or instilled intratracheally with 0.9 mg/kg PHMG-P (ITI group); they were euthanatized at 4 h and on days 1 and 7 after treatment. Increased total BAL cell count and proinflammatory cytokine production, along with fibrotic changes in the lungs, were detected in the ITI group only. Levels of hepatic enzymes and hepatic serum amyloid A mRNA expression were markedly upregulated in the 7.2 mg/kg IV and ITI groups at 4 h or day 1 after treatment, but returned to baseline. No pathological findings were detected in the heart, liver, or kidneys. To simulate the IV injection, A549, THP-1, and HepG2 cells were treated with PHMG-P in cell culture media supplemented with different serum concentrations. Increased serum concentration was associated with an increase in cell viability. These results support the idea that direct contact between PHMG-P and cell membranes is necessary for PHMG-induced toxicity.


[6]-Shogaol Attenuates Oxaliplatin-Induced Allodynia through Serotonergic Receptors and GABA in the Spinal Cord in Mice.

  • Suyong Kim‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

Although oxaliplatin is a well-known anti-cancer agent used for the treatment of colorectal cancer, treated patients often experience acute cold and mechanical allodynia as side effects. Unfortunately, no optimal treatment has been developed yet. In this study, [6]-shogaol (10 mg/kg, i.p.), which is one of the major bioactive components of Zingiber officinale roscoe (Z. officinale), significantly alleviated allodynia induced by oxaliplatin (6 mg/kg, i.p.) injection. Cold and mechanical allodynia were assessed by acetone drop and von Frey filament tests, respectively. The analgesic effect of [6]-shogaol was blocked by the intrathecal injection of 5-HT1A, 5-HT3, and GABAB receptor antagonists, NAN-190 (1 μg), MDL-72222 (15 μg), and CGP 55845 (10 μg), respectively. Furthermore, oxaliplatin injection lowered the GABA concentration in the superficial laminae of the spinal dorsal horn, whereas [6]-shogaol injection significantly elevated it. The GAD (glutamic acid decarboxylase) 65 concentration also increased after [6]-shogaol administration. However, pre-treatment of NAN-190 completely inhibited the increased GABA induced by [6]-shogaol in the spinal dorsal horn, whereas MDL-72222 partially blocked the effect. Altogether, these results suggest that [6]-shogaol could attenuate oxaliplatin-induced cold and mechanical allodynia through 5-HT1A and 5-HT3 receptor antagonists located in the GABAergic neurons in the spinal dorsal horn in mice.


Dynamic alteration of intrinsic properties of the cerebellar Purkinje cell during the motor memory consolidation.

  • Dong Cheol Jang‎ et al.
  • Molecular brain‎
  • 2023‎

Intrinsic plasticity of the cerebellar Purkinje cell (PC) plays a critical role in motor memory consolidation. However, detailed changes in their intrinsic properties during memory consolidation are not well understood. Here, we report alterations in various properties involved in intrinsic excitability, such as the action potential (AP) threshold, AP width, afterhyperpolarization (AHP), and sag voltage, which are associated with the long-term depression of intrinsic excitability following the motor memory consolidation process. We analyzed data recorded from PCs before and 1, 4, and 24 h after cerebellum-dependent motor learning and found that these properties underwent dynamic changes during the consolidation process. We further analyzed data from PC-specific STIM1 knockout (STIM1PKO) mice, which show memory consolidation deficits, and derived intrinsic properties showing distinct change patterns compared with those of wild-type littermates. The levels of memory retention in the STIM1PKO mice were significantly different compared to wild-type mice between 1 and 4 h after training, and AP width, fast- and medium-AHP, and sag voltage showed different change patterns during this period. Our results provide information regarding alterations in intrinsic properties during a particular period that are critical for memory consolidation.


Involvement of the Spinal Serotonergic System in the Analgesic Effect of [6]-Shogaol in Oxaliplatin-Induced Neuropathic Pain in Mice.

  • Juan Gang‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

Oxaliplatin is a chemotherapy drug that can induce severe acute neuropathy in patients within hours of treatment. In our previous study, 10 mg/kg [6]-shogaol (i.p.) significantly alleviated cold and mechanical allodynia induced by a 6 mg/kg oxaliplatin injection (i.p.); however, the precise serotonin-modulatory effect has not been investigated. In this study, we showed that intrathecal injections of NAN-190 (5-HT1A receptor antagonist, 1 µg) and MDL-72222 (5-HT3 receptor antagonist, 15 µg), but not ketanserin (5-HT2A receptor antagonist, 1 µg), significantly blocked the analgesic effect of [6]-shogaol (10 mg/kg, i.p.). Furthermore, the gene expression of the serotonin-synthesizing enzyme tryptophan hydroxylase 2 (TPH2) and serotonin levels in the spinal cord and serum were significantly downregulated (p < 0.0001 and p = 0.0002) and upregulated (p = 0.0298 and p = 0.0099) after oxaliplatin and [6]-shogaol administration, respectively. Moreover, both the gene and protein expression of the spinal serotonin receptors 5-HT1A and 5-HT3 significantly increased after [6]-shogaol injections (p < 0.0001). Finally, intrathecal injections of both receptor agonists (8-OH-DPAT; 5-HT1A receptor agonist, 10 µg and m-CPBG; 5-HT3 receptor agonist, 15 µg) mimicked the effects of [6]-shogaol in oxaliplatin-injected mice. Taken together, these results demonstrate that [6]-shogaol attenuates oxaliplatin-induced neuropathic pain by modulating the spinal serotoninergic system.


Phlomidis Radix Extract Alleviates Paclitaxel-Induced Neuropathic Pain by Modulating Spinal TRPV1 in Mice.

  • Keun-Tae Park‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Paclitaxel is a chemotherapeutic drug reported to have excellent activity against tumors; however, various side effects, including peripheral neuropathy, limit its use in some cases. In this study, the effect of Phlomidis radix (P.Radix) extract was assessed on paclitaxel-induced cold and mechanical peripheral neuropathy in mice. Multiple paclitaxel injections (accumulative dose of 8 mg/kg, i.p.) induced increased behavioral responses to cold and mechanical stimuli in mice from D10 to D21 after the first paclitaxel injection. Cold and mechanical stimuli were performed by acetone drop and von Frey filament, respectively. Oral administrations of 25% ethanol extract of P.Radix (300 and 500 mg/kg) relieved cold and mechanical pain in a dose-dependent manner. Furthermore, among the various transient receptor potential (TRP) cation channel subfamilies, paclitaxel upregulated the spinal gene expression of transient receptor potential vanilloid 1 (TRPV1) and melastatin 4 (TRPM4), but not ankyrin 1 (TRPA1). However, 500 mg/kg but not 300 mg/kg of P.Radix extract significantly downregulated the gene expression of TRPV1 but not TRPM4. Among the components of P.Radix, sesamoside was identified and quantified by high-performance liquid chromatography (HPLC), and the administration of sesamoside (7.5 mg/kg, i.p.) showed a similar analgesic effect to 300 mg/kg P.Radix. These results suggest that P.Radix and sesamoside should be considered when treating paclitaxel-induced neuropathic pain.


Analgesic Effect of Melittin on Oxaliplatin-Induced Peripheral Neuropathy in Rats.

  • Seunghwan Choi‎ et al.
  • Toxins‎
  • 2019‎

Oxaliplatin is a chemotherapeutic agent used for metastatic colon and other advanced cancers. Most common side effect of oxaliplatin is peripheral neuropathy, manifested in mechanical and cold allodynia. Although the analgesic effect of bee venom has been proven to be effective against oxaliplatin-induced peripheral neuropathy, the effect of its major component; melittin has not been studied yet. Thus, in this study, we investigated whether melittin has an analgesic effect on oxaliplatin-induced allodynia. Intraperitoneal single injection of oxaliplatin (6 mg/kg) induced mechanical and cold allodynia, resulting in increased withdrawal behavior in response to von Frey filaments and acetone drop on hind paw. Subcutaneous melittin injection on acupoint ST36 (0.5 mg/kg) alleviated oxaliplatin-induced mechanical and cold allodynia. In electrophysiological study, using spinal in vivo extracellular recording, it was shown that oxaliplatin-induced hyperexcitation of spinal wide dynamic range neurons in response to peripheral stimuli, and melittin administration inhibited this neuronal activity. In behavioral assessment, analgesic effect of melittin was blocked by intrathecal α1- and α2- adrenergic receptor antagonists administration. Based on these results, we suggest that melittin could be used as an analgesic on oxaliplatin-induced peripheral neuropathy, and that its effect is mediated by activating the spinal α1- and α2-adrenergic receptors.


Gyejigachulbu-Tang Relieves Oxaliplatin-Induced Neuropathic Cold and Mechanical Hypersensitivity in Rats via the Suppression of Spinal Glial Activation.

  • Byung-Soo Ahn‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2014‎

Activation of spinal glial cells plays a crucial role in the pathogenesis of neuropathic pain. An administration of oxaliplatin, an important anticancer drug, often induces acute neuropathic cold hypersensitivity and/or mechanical hypersensitivity in patients. Gyejigachulbu-tang (GBT), a herbal formula comprising Cinnamomi Cortex, Paeoniae Radix, Atractylodis Lanceae Rhizoma, Zizyphi Fructus, Glycyrrhizae Radix, Zingiberis Rhizoma, and Aconiti Tuber, has been used in East Asia to treat various pain symptoms, especially in cold patients. This study investigated whether and how GBT alleviates oxaliplatin-induced cold and mechanical hypersensitivity in rats. The behavioral signs of cold and mechanical hypersensitivity were evaluated by a tail immersion test in cold water (4°C) and a von Frey hair test, respectively. The significant cold and mechanical hypersensitivity were observed 3 days after an oxaliplatin injection (6 mg/kg, i.p.). Daily oral administration of GBT (200, 400, and 600 mg/kg) for 5 days markedly attenuated cold and mechanical hypersensitivity. Immunoreactivities of glial fibrillary acidic protein (GFAP, astrocyte marker) and OX-42 (microglia marker) in the spinal dorsal horn were significantly increased by an oxaliplatin injection, which were restored by GBT administration. These results indicate that GBT relieves oxaliplatin-induced cold and mechanical hypersensitivity in rats possibly through the suppression of spinal glial activation.


Analysis of the genome of the sexually transmitted insect virus Helicoverpa zea nudivirus 2.

  • John P Burand‎ et al.
  • Viruses‎
  • 2012‎

The sexually transmitted insect virus Helicoverpa zea nudivirus 2 (HzNV-2) was determined to have a circular double-stranded DNA genome of 231,621 bp coding for an estimated 113 open reading frames (ORFs). HzNV-2 is most closely related to the nudiviruses, a sister group of the insect baculoviruses. Several putative ORFs that share homology with the baculovirus core genes were identified in the viral genome. However, HzNV-2 lacks several key genetic features of baculoviruses including the late transcriptional regulation factor, LEF-1 and the palindromic hrs, which serve as origins of replication. The HzNV-2 genome was found to code for three ORFs that had significant sequence homology to cellular genes which are not generally found in viral genomes. These included a presumed juvenile hormone esterase gene, a gene coding for a putative zinc-dependent matrix metalloprotease, and a major facilitator superfamily protein gene; all of which are believed to play a role in the cellular proliferation and the tissue hypertrophy observed in the malformation of reproductive organs observed in HzNV-2 infected corn earworm moths, Helicoverpa zea.


A Parametric Study on the Immunomodulatory Effects of Electroacupuncture in DNP-KLH Immunized Mice.

  • Sun Kwang Kim‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2011‎

This study was conducted to compare the effects of low frequency electroacupuncture (EA) and high frequency EA at acupoint ST36 on the production of IgE and Th1/Th2 cytokines in BALB/c mice that had been immunized with 2,4-dinitrophenylated keyhole limpet protein (DNP-KLH), as well as to investigate the difference in the immunomodulatory effects exerted by EA stimulations at acupoint ST36 and at a non-acupoint (tail). Female BALB/c mice were divided into seven groups: normal (no treatments), IM (immunization only), ST36-PA (IM + plain acupuncture at ST36), ST36-LEA (IM + low frequency (1 Hz) EA at ST36), ST36-HEA (IM + high frequency (120 Hz) EA at ST36), NA-LEA (IM + low frequency (1 Hz) EA at non-acupoint) and NA-HEA (IM + high frequency (120 Hz) EA at non-acupoint). EA stimulation was performed daily for two weeks, and total IgE, DNP-KLH specific IgE, IL-4 and IFN-γ levels were measured at the end of the experiment. The results of this study showed that the IgE and IL-4 levels were significantly suppressed in the ST36-LEA and ST36-HEA groups, but not in the NA-LEA and NA-HEA groups. However, there was little difference in the immunomodulatory effects observed in the ST36-LEA and ST36-HEA groups. Taken together, these results suggest that EA stimulation-induced immunomodulation is not frequency dependent, but that it is acupoint specific.


Direct translation of climbing fiber burst-mediated sensory coding into post-synaptic Purkinje cell dendritic calcium.

  • Seung-Eon Roh‎ et al.
  • eLife‎
  • 2020‎

Climbing fibers (CFs) generate complex spikes (CS) and Ca2+ transients in cerebellar Purkinje cells (PCs), serving as instructive signals. The so-called 'all-or-none' character of CSs has been questioned since the CF burst was described. Although recent studies have indicated a sensory-driven enhancement of PC Ca2+ signals, how CF responds to sensory events and contributes to PC dendritic Ca2+ and CS remains unexplored. Here, single or simultaneous Ca2+ imaging of CFs and PCs in awake mice revealed the presynaptic CF Ca2+ amplitude encoded the sensory input's strength and directly influenced post-synaptic PC dendritic Ca2+ amplitude. The sensory-driven variability in CF Ca2+ amplitude depended on the number of spikes in the CF burst. Finally, the spike number of the CF burst determined the PC Ca2+ influx and CS properties. These results reveal the direct translation of sensory information-coding CF inputs into PC Ca2+, suggesting the sophisticated role of CFs as error signals.


Development of a spontaneous pain indicator based on brain cellular calcium using deep learning.

  • Heera Yoon‎ et al.
  • Experimental & molecular medicine‎
  • 2022‎

Chronic pain remains an intractable condition in millions of patients worldwide. Spontaneous ongoing pain is a major clinical problem of chronic pain and is extremely challenging to diagnose and treat compared to stimulus-evoked pain. Although extensive efforts have been made in preclinical studies, there still exists a mismatch in pain type between the animal model and humans (i.e., evoked vs. spontaneous), which obstructs the translation of knowledge from preclinical animal models into objective diagnosis and effective new treatments. Here, we developed a deep learning algorithm, designated AI-bRNN (Average training, Individual test-bidirectional Recurrent Neural Network), to detect spontaneous pain information from brain cellular Ca2+ activity recorded by two-photon microscopy imaging in awake, head-fixed mice. AI-bRNN robustly determines the intensity and time points of spontaneous pain even in chronic pain models and evaluates the efficacy of analgesics in real time. Furthermore, AI-bRNN can be applied to various cell types (neurons and glia), brain areas (cerebral cortex and cerebellum) and forms of somatosensory input (itch and pain), proving its versatile performance. These results suggest that our approach offers a clinically relevant, quantitative, real-time preclinical evaluation platform for pain medicine, thereby accelerating the development of new methods for diagnosing and treating human patients with chronic pain.


Nephrotoxicity evaluation and proteomic analysis in kidneys of rats exposed to thioacetamide.

  • Ji-Youn Lim‎ et al.
  • Scientific reports‎
  • 2022‎

Thioacetamide (TAA) was administered orally at 0, 10, and 30 mg/kg body weight (BW) daily to Sprague-Dawley rats aged 6-7 weeks for 28 consecutive days. Nephrotoxicity and proteomics were evaluated in the kidneys of rats exposed to TAA. The BW decreased, however, the relative kidneys weight increased. No significant histopathologic abnormalities were found in the kidneys. The numbers of monocytes and platelets were significantly increased. However, the mean corpuscular volume and hematocrit values were decreased significantly in rats exposed to 30 mg/kg BW TAA. The expression levels of Kim-1 and NGAL were increased 4 to 5-fold in the kidneys, resulting in significant nephrotoxicity. Proteomic analysis was conducted and a total of 5221 proteins spots were resolved. Of these, 3 and 21 protein spots were up- and downregulated, respectively. The validation of seven proteins was performed by Western blot analysis. The expression level of ASAP2 was significantly upregulated, whereas RGS14, MAP7Dl, IL-3Rα, Tmod1, NQO2, and MUP were reduced. Sixteen isoforms of MUP were found by the 2DE immunoblot assay and were significantly downregulated with increasing exposure to TAA. MUP isoforms were compared in the liver, kidneys, and urine of untreated rats and a total of 43 isoforms were found.


Alleviation of skin inflammation after Lin(-) cell transplantation correlates with their differentiation into myeloid-derived suppressor cells.

  • Su Jeong Ryu‎ et al.
  • Scientific reports‎
  • 2015‎

To understand the cellular mechanism underlying the therapeutic effects exerted by hematopoietic stem cell transplantation in the repair of tissue damage, we investigated the in vivo dynamics of bone marrow (BM) lineage-negative (Lin(-)) cells transplanted into mice with hyper sensitivity dermatitis. Longitudinal in vivo imaging and flow cytometry analyses revealed that Lin(-) cells home directly to inflamed skin within 6 h, where they undergo extensive expansion with the peak on day 14 post-transplantation, and preferential differentiation into CD11b(+)Ly6G(int)Ly6C(+) cells by day 7. Cells with phenotypic profiles of neutrophils, macrophages, and DCs appeared in inflamed skin on day 14. Progenies of transplanted Lin(-) cells showed similar kinetics of expansion and myeloid differentiation in BM. However, differentiation into CD11b(+)Ly6G(int)Ly6C(+) cells in the inflamed skin on day 7 was more skewed toward CD115(+) cells (≥60%) with immune suppressive function and higher expression levels of iNOS, arginase, and IL-10, compared with those in the BM. Transplantation of Lin(-) cells reduced the levels of Cd3 transcript and CD4(+)/CD8(+) cells in inflamed skin. These results demonstrate differentiation of transplanted Lin(-) cells into myeloid-derived suppressor cells in inflamed skin to be the basis of the alleviation of skin inflammation after Lin(-) cell transplantation.


Native and bone marrow-derived cell mosaicism in gastric carcinoma in H. pylori-infected p27-deficient mice.

  • Songhua Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Chronic Helicobacter pylori (H. pylori) infection promotes non-cardia gastric cancer. Some mouse models suggest that bone marrow derived cells (BMDC) contribute to Helicobacter-associated gastric carcinogenesis. We determined whether this increased susceptibility to Helicobacter-induced gastric carcinogenesis of p27-deficient mice is dependent upon their p27-null BMDC or their p27-null gastric epithelial cells.


Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain.

  • Ji Hwan Lee‎ et al.
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology‎
  • 2016‎

This study was performed to investigate whether the spinal cholinergic and serotonergic analgesic systems mediate the relieving effect of electroacupuncture (EA) on oxaliplatin-induced neuropathic cold allodynia in rats. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water (4℃) and measuring the withdrawal latency. EA stimulation (2 Hz, 0.3-ms pulse duration, 0.2~0.3 mA) at the acupoint ST36, GV3, or LI11 all showed a significant anti-allodynic effect, which was stronger at ST36. The analgesic effect of EA at ST36 was blocked by intraperitoneal injection of muscarinic acetylcholine receptor antagonist (atropine, 1 mg/kg), but not by nicotinic (mecamylamine, 2 mg/kg) receptor antagonist. Furthermore, intrathecal administration of M2 (methoctramine, 10 µg) and M3 (4-DAMP, 10 µg) receptor antagonist, but not M1 (pirenzepine, 10 µg) receptor antagonist, blocked the effect. Also, spinal administration of 5-HT3 (MDL-72222, 12 µg) receptor antagonist, but not 5-HT1A (NAN-190, 15 µg) or 5-HT2A (ketanserin, 30 µg) receptor antagonist, prevented the anti-allodynic effect of EA. These results suggest that EA may have a signifi cant analgesic action against oxaliplatin-induced neuropathic pain, which is mediated by spinal cholinergic (M2, M3) and serotonergic (5-HT3) receptors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: