Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 154 papers

Herbal extract SH003 suppresses tumor growth and metastasis of MDA-MB-231 breast cancer cells by inhibiting STAT3-IL-6 signaling.

  • Youn Kyung Choi‎ et al.
  • Mediators of inflammation‎
  • 2014‎

Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.


Oral administration of herbal mixture extract inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis in BALB/c mice.

  • Soon Re Kim‎ et al.
  • Mediators of inflammation‎
  • 2014‎

CP001 is four traditional herbal medicine mixtures with anti-inflammatory properties. In this study, we investigated the effect of oral administration of CP001 ethanol extract on the 2,4-dinitrochlorobenzene- (DNCB-) induced AD mouse models. For that purpose, we observed the effects of oral administration of CP001 on skin inflammatory cell infiltration, skin mast cells, production of serum IgE, and expression of Th2 cytokine mRNA in the AD skin lesions of DNCB treated BALB/c mice. Histological analyses demonstrated that CP001 decreased dermis and epidermis thickening as well as dermal infiltration induced by inflammatory cells. In addition, CP001 decreased mast cell infiltration in count as well as dermal infiltration induced by inflammatory cells. In the skin lesions, mRNA expression of interleukin- (IL-) 4 and IL-13 was inhibited by CP001. CP001 also reduced the production of IgE level in mouse plasma. In addition, we investigated the effect of CP001 on the inflammatory allergic reaction using human mast cells (HMC-1). In HMC-1, cytokine production and mRNA levels of IL-4, IL-13, IL-6, and IL-8 were suppressed by CP001. Taken together, our results showed that oral administration of CP001 exerts beneficial effects in AD symptoms, suggesting that CP001 might be a useful candidate for the treatment of AD.


Anti-allodynic effect of Buja in a rat model of oxaliplatin-induced peripheral neuropathy via spinal astrocytes and pro-inflammatory cytokines suppression.

  • Yongjae Jung‎ et al.
  • BMC complementary and alternative medicine‎
  • 2017‎

Oxaliplatin, a widely used anticancer drug against metastatic colorectal cancer, can induce acute peripheral neuropathy, which is characterized by cold and mechanical allodynia. Activation of glial cells (e.g. astrocytes and microglia) and increase of pro-inflammatory cytokines (e.g. IL-1β and TNF-α) in the spinal cord play a crucial role in the pathogenesis of neuropathic pain. Our previous study demonstrated that Gyejigachulbu-Tang (GBT), a herbal complex formula, alleviates oxaliplatin-induced neuropathic pain in rats by suppressing spinal glial activation. However, it remains to be elucidated whether and how Buja (Aconiti Tuber), a major ingredient of GBT, is involved in the efficacy of GBT.


Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer.

  • Woojin Kim‎ et al.
  • Nature chemical biology‎
  • 2013‎

Enhancer of zeste homolog 2 (EZH2) is the histone lysine N-methyltransferase component of the Polycomb repressive complex 2 (PRC2), which, in conjunction with embryonic ectoderm development (EED) and suppressor of zeste 12 homolog, regulates cell lineage determination and homeostasis. Enzymatic hyperactivity has been linked to aberrant repression of tumor suppressor genes in diverse cancers. Here, we report the development of stabilized α-helix of EZH2 (SAH-EZH2) peptides that selectively inhibit H3 Lys27 trimethylation by dose-responsively disrupting the EZH2-EED complex and reducing EZH2 protein levels, a mechanism distinct from that reported for small-molecule EZH2 inhibitors targeting the enzyme catalytic domain. MLL-AF9 leukemia cells, which are dependent on PRC2, undergo growth arrest and monocyte-macrophage differentiation upon treatment with SAH-EZH2, consistent with observed changes in expression of PRC2-regulated, lineage-specific marker genes. Thus, by dissociating the EZH2-EED complex, we pharmacologically modulate an epigenetic 'writer' and suppress PRC2-dependent cancer cell growth.


p53 causes butein‑mediated apoptosis of chronic myeloid leukemia cells.

  • Sang-Mi Woo‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Progression of chronic myeloid leukemia, marked by the oncogenic Bcr‑Abl mutation, is tightly associated with an alteration of the p53 pathway. It is known that butein extracted from various plants represses cancer growth. Although the anticancer effects of butein are widely accepted, the mechanisms by which butein induces apoptosis of chronic myeloid leukemia cells remains to be elucidated. The present study demonstrated that butein-induced apoptosis was mediated by p53. KBM5 chronic myeloid leukemia (CML) cells expressing wild-type p53 were more sensitive to butein compared with p53-null K562 CML cells in terms of apoptotic cell death. In addition, butein arrested KBM5 cells at S-phase and altered the expression levels of certain cyclins and the p53-downstream targets, MDM2 and p21. In addition, while butein reduced the protein expression of MDM2 in the KBM5 and K562 cells, it resulted in proteasome-independent MDM2 degradation in p53-expressing KBM5 cells, however, not in p53-null K562 cells. Therefore, the present study suggested that p53 causes the butein-mediated apoptosis of leukemic cells.


PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells.

  • Partha Pratim Das‎ et al.
  • Cell reports‎
  • 2015‎

Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2, the entire locus becomes transcriptionally repressed due to gain of DNAme at the intergenic differentially methylated regions (IG-DMRs). Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Further analysis reveals that PRC2 interacts physically with Dnmt3 methyltransferases and reduces recruitment to and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations are consistent with a mechanism through which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency.


Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells.

  • Hye-Sook Seo‎ et al.
  • Oncology reports‎
  • 2016‎

Flavonoids are assumed to exert beneficial effects in different types of cancers at high concentrations. Yet, their molecular mechanisms of action remain unknown. The present study aimed to examine the effect of quercetin on proliferation and apoptosis in HER2-expressing breast cancer cells. The anti-proliferative effects of quercetin were examined by proliferation, MTT and clonogenic survival assays. The effect of quercetin on expression of apoptotic molecules was determined by western blotting. Luciferase reporter assay was performed to measure signal transducer and activator of transcription 3 (STAT3) transcriptional activity. ELISA assay was performed to measure intracellular MMP-9 levels. Immunocytochemistry was performed to evaluate the nuclear STAT3 level. The results revealed that quercetin inhibited the proliferation of BT-474 cells in a dose- and time-dependent manner. Quercetin also inhibited clonogenic survival (anchorage-dependent and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an increase in sub-G0/G1 apoptotic populations. Quercetin induced caspase-dependent extrinsic apoptosis upregulating the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly(ADP‑ribose) polymerase (PARP). In contrast, quercetin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease the mitochondrial membrane potential and did not affect the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX). Quercetin reduced the expression of phospho-JAK1 and phospho-STAT3 and decreased STAT3-dependent luciferase reporter gene activity in the BT-474 cells. Quercetin inhibited MMP-9 secretion and decreased the nuclear translocation of STAT3. Our study indicates that quercetin induces apoptosis at concentrations >20 µM through inhibition of STAT3 signaling and could serve as a useful compound to prevent or treat HER2-overexpressing breast cancer.


DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis.

  • Hyeong Sim Choi‎ et al.
  • Oncotarget‎
  • 2016‎

Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.


A pilot study to evaluate the effect of Taeumjowi-tang on obesity in Korean adults: study protocol for a randomised, double-blind, placebo-controlled, multicentre trial.

  • Sunju Park‎ et al.
  • Trials‎
  • 2012‎

Obesity, which is described as excessive or abnormal body fat, increases the risk of diet-related diseases. In Korea and around the world, the prevalence of obesity has grown annually from 1998 to 2008. This growth has continued despite various therapeutic efforts. The discovery of new and alternative treatments for obesity should be considered an important priority. Taeumjowi-tang (TJ001), a traditional Korean medicinal extract consisting of eight herbs, is a widely used herbal remedy for obesity in Korea. However, the efficacy and safety of TJ001 have not been fully investigated in a clinical trial. The purpose of this pilot study is to estimate obesity-related parameters and to assess the efficacy and safety of TJ001.


Effects of Gyejibongnyeong-hwan on dysmenorrhea caused by blood stagnation: study protocol for a randomized controlled trial.

  • Jeong-Su Park‎ et al.
  • Trials‎
  • 2012‎

Gyejibongnyeong-hwan (GJBNH) is one of the most popular Korean medicine formulas for menstrual pain of dysmenorrhea. The concept of blood stagnation in Korean medicine is considered the main factor of causing abdominal pain, or cramps, during menstrual periods. To treat the symptoms, GJBNH is used to fluidify the stagnated blood and induce the blood flow to be smooth, reducing pain as the result. The purpose of this trial is to identify the efficacy of GJBNH in dysmenorrhea caused by blood stagnation.


Use of scopoletin to inhibit the production of inflammatory cytokines through inhibition of the IkappaB/NF-kappaB signal cascade in the human mast cell line HMC-1.

  • Phil-Dong Moon‎ et al.
  • European journal of pharmacology‎
  • 2007‎

Scopoletin (6-methoxy-7-hydroxycoumarin) is a coumarin compound and a pharmacologically active agent that has been isolated from several plant species. However, as yet there is no clear explanation of how scopoletin affects the production of inflammatory cytokine. We therefore used cells from the human mast cell line (HMC-1) to investigate this effect. Scopoletin significantly and dose-dependently inhibits the way in which phorbol 12-myristate 13-acetate (PMA) plus A23187 induces the production of inflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-8 (P<0.05). The maximal rates at which scopoletin (0.2 mM) inhibited the production of TNF-alpha, IL-6, and IL-8 were 41.6%+/-4.2%, 71.9%+/-2.5%, and 43.0%+/-5.7%, respectively. In activated HMC-1 cells, the expression level of nuclear factor (NF)-kappaB/Rel A protein was increased in the nucleus whereas the level of NF-kappaB/Rel A in nucleus was decreased by treatment with scopoletin. Scopoletin decreased PMA plus A23187-induced luciferase activity. Scopoletin also inhibits IkappaBalpha phosphorylation and degradation in cytoplasm. These results indicate that scopoletin has a potential regulatory effect on inflammatory reactions that are mediated by mast cells.


DSGOST regulates resistance via activation of autophagy in gastric cancer.

  • Tae Woo Kim‎ et al.
  • Cell death & disease‎
  • 2018‎

Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST in Korean, Danggui-Sini-Jia-Wuzhuyu-Shengian-Tang in Chinese, and Tokishigyakukagoshuyushokyoto (TJ-38) in Japanese), a well-known traditional Korean/Chinese/Japanese medicine, has long been used to treat vascular diseases such as Raynaud's phenomenon (RP). However, anticancer effect of DSGOST remains elusive. In this study, we checked if DSGOST has an anticancer effect against gastric cancer cells, and investigated the mechanisms underlying DSGOST resistance. Moreover, DSGOST regulates chemoresistance in cisplatin-treated gastric cancer cells. Interestingly, DSGOST treatment induced the accumulation of GFP-LC3 puncta and increased the level of autophagy markers, such as LC3-II, ATG5, and Beclin-1, indicating activated autophagy. Furthermore, DSGOST could activate epithelial-to-mesenchymal transition (EMT) and exosomes via induction of autophagy. DSGOST in combination with TGFβ also induced autophagy and EMT. However, autophagy inhibition induces DSGOST-mediated cell death in gastric cancer cells. In addition, autophagy inhibition blocks the activation of DSGOST-mediated EMT markers including N-cadherin, Snail, Slug, vimentin, β-catenin, p-Smad2, and p-Smad3. Taken together, these findings indicated that prosurvival autophagy was one of the mechanisms involved in the resistance of gastric cancer to DSGOST. Targeting the inhibition of autophagy could be an effective therapeutic approach to overcome resistance to DSGOST in gastric cancer.


A retrospective cohort study on the outcomes of ischemic stroke patients with adjuvant Korean Medicine treatment.

  • Ye-Seul Lee‎ et al.
  • Scientific reports‎
  • 2018‎

This study aims to examine the long-term effect of adjuvant treatment in Korean Medicine (KM) clinics in ischemic stroke patients, using a national sample cohort from the National Health Insurance Service in Korea between 2010 and 2013. The National Health Insurance Service - National Sample Cohort database from 2002 to 2013 was used in this study. Ischemic stroke patients were defined and covariates were included to account for socioeconomic variables, comorbidities and disease severity. Propensity score matching was applied. Cox proportional hazards modeling and Kaplan-Meier analysis were applied to determine the differences between KM and non-KM treated groups. The results shows that KM-treated group had a higher probability of survival than non-KM group patients. No significant difference was observed between the risk of readmission between the treated and non-treated patients. Kaplan-Meier analysis showed a weak effect of KM treatments in the patients with 8 to 28 days of hospital stay for a lower risk of recurrence than in non-treated patients. In conclusion, KM treatment of mild to moderate ischemic stroke patients has a mild effect on the survival probability of stroke. Its effect for improving long-term recurrence need to be explored in the future studies.


Topical Application of KAJD Attenuates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis Symptoms Through Regulation of IgE and MAPK Pathways in BALB/C Mice and Several Immune Cell Types.

  • Se Hyang Hong‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Atopic dermatitis (AD) is a frequent skin complication that is caused by unknown reasons. KHU-ATO-JIN-D (KAJD) is a new drug aimed at AD composed of a mixture of extracts from six plants known to have anti-inflammatory and antiallergic effects. This study investigated whether KAJD alleviates 2,4-dinitrochlorobenzene (DNCB)-induced AD in BALB/c mice and several immune cell types. We applied KAJD to DNCB-induced AD-like skin lesions in BALB/c mice, phorbol myristate acetate/ionomycin-stimulated human mast cells (HMC-1), and lipopolysaccharide (LPS)-stimulated macrophages and splenocytes. Histological, ELISA, PCR, and Western blot experiments were performed. The application of KAJD significantly attenuated the lesion severity and skin thickness and inhibited the infiltration of inflammatory cells, mast cells, and CD4+ T cells into the sensitized skin of mice. Reduced leukocyte numbers and proinflammatory cytokine and IgE levels were also observed in the sera of KAJD-treated mice. Moreover, in vitro studies demonstrated that KAJD treatment reduced the LPS-induced expression of proinflammatory cytokines and nitric oxide (NO) production in RAW 264.7 cells. The regulation of IL-4 and IL-6 mRNA and MAPK pathways was also detected in agonist-induced isolated splenocytes and HMC-1 cells by the addition of KAJD. Taken together, our results demonstrate that KAJD inhibits the development of DNCB-induced AD in BALB/c mice and in several immune cell types, suggesting that KAJD might be a useful therapeutic drug for the treatment of AD.


SH003 activates autophagic cell death by activating ATF4 and inhibiting G9a under hypoxia in gastric cancer cells.

  • Tae Woo Kim‎ et al.
  • Cell death & disease‎
  • 2020‎

In gastric cancer (GC), hypoxia is one of the greatest obstacles to cancer therapy. In this present study, we report that SH003, an herbal formulation, induces ER stress via PERK-ATF4-CHOP signaling in GC. SH003-mediated ER stress inhibits G9a, a histone methyltransferase, by reducing STAT3 phosphorylation and activates autophagy, indicating to the dissociation of Beclin-1 and autophagy initiation from Bcl-2/Beclin-1 complex. However, the inhibition of PERK and CHOP inhibited SH003-induced cell death and autophagy activation. Moreover, targeting autophagy using specific siRNAs of LC3B or p62 or the autophagy inhibitor 3-MA also inhibited SH003-induced cell death in GC. Interestingly, SH003 induces BNIP3-mediated autophagic cell death under hypoxia than normoxia in GC. These findings reveal that SH003-induced ER stress regulates BNIP3-induced autophagic cell death via inhibition of STAT3-G9a axis under hypoxia in GC. Therefore, SH003 may an important tumor therapeutic strategy under hypoxia-mediated chemo-resistance.


Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells.

  • Hye-Sook Seo‎ et al.
  • Oncology reports‎
  • 2017‎

Drug resistance in chemotherapy is a serious obstacle for the successful treatment of cancer. Drug resistance is caused by various factors, including the overexpression of P‑glycoprotein (P‑gp, MDR1). The development of new, useful compounds that overcome drug resistance is urgent. Apigenin, a dietary flavonoid, has been reported as an anticancer drug in vivo and in vitro. In the present study, we investigated whether apigenin is able to reverse drug resistance using adriamycin‑resistant breast cancer cells (MCF‑7/ADR). In our experiments, apigenin significantly decreased cell growth and colony formation in MCF‑7/ADR cells and parental MCF‑7 cells. This growth inhibition was related to the accumulation of cells in the sub‑G0/G1 apoptotic population and an increase in the number of apoptotic cells. Apigenin reduced the mRNA expression of multidrug resistance 1 (MDR1) and multidrug resistance‑associated proteins (MRPs) in MCF‑7/ADR cells. Apigenin also downregulated the expression of P‑gp. Apigenin reversed drug efflux from MCF‑7/ADR cells, resulting in rhodamine 123 (Rho123) accumulation. Inhibition of drug resistance by apigenin is related to the suppression of the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Apigenin decreased STAT3 activation (p‑STAT3) and its nuclear translocation and inhibited the secretion of VEGF and MMP‑9, which are STAT3 target genes. A STAT3 inhibitor, JAK inhibitor I and an HIF‑1α inhibitor decreased cell growth in MCF‑7 and MCF‑7/ADR cells. Taken together, these results demonstrate that apigenin can overcome drug resistance.


Effects of Angelicae dahuricae Radix on 2, 4-Dinitrochlorobenzene-Induced Atopic Dermatitis-Like Skin Lesions in mice model.

  • Jin Mo Ku‎ et al.
  • BMC complementary and alternative medicine‎
  • 2017‎

Atopic dermatitis (AD) is an inflammatory, chronically relapsing, and intensively pruritic skin disease that affect 10-30% of the global population. Angelicae dahuricae Radix (ADR) has been reported to be anti-inflammatory in Korean Medicine. In the present study, we investigated whether ADR suppresses the progression of AD in animal model.


Acupuncture as an adjuvant therapy for management of treatment-related symptoms in breast cancer patients: Systematic review and meta-analysis (PRISMA-compliant).

  • Soobin Jang‎ et al.
  • Medicine‎
  • 2020‎

Although randomized controlled trials have revealed the considerable effectiveness of acupuncture in breast cancer patients, there have been no studies exploring current acupuncture research trends for treatment induced various symptoms in breast cancer patients. This review evaluated the effectiveness of acupuncture for treatment-induced symptoms in breast cancer patients.


Platycodin D enhances LDLR expression and LDL uptake via down-regulation of IDOL mRNA in hepatic cells.

  • Yu-Jeong Choi‎ et al.
  • Scientific reports‎
  • 2020‎

The root of Platycodon grandiflorum (PG) has long been used as a traditional herbal medicine in Asian country. Platycondin D (PD), triterpenoid saponin that is a main constituent of PG, exhibits various biological activities such as anti-inflammatory, anti-oxidant, anti-diabetic, and anti-cancer effects. A previous study showed that PD had cholesterol-lowering effects in mice that develop hypercholesterolemia, but the underlying molecular mechanisms have not been elucidated during the last decade. Here, we demonstrated that both PG and PD markedly increased levels of cell surface low-density lipoprotein receptor (LDLR) by down-regulation of the E3 ubiquitin ligase named inducible degrader of the LDLR (IDOL) mRNA, leading to the enhanced uptake of LDL-derived cholesterol (LDL-C) in hepatic cells. Furthermore, cycloheximide chase analysis and in vivo ubiquitination assay revealed that PD increased the half-life of LDLR protein by reducing IDOL-mediated LDLR ubiquitination. Finally, we demonstrated that treatment of HepG2 cells with simvastatin in combination with PG and PD had synergistic effects on the improvement of LDLR expression and LDL-C uptake. Together, these results provide the first molecular evidence for anti-hypercholesterolemic activity of PD and suggest that PD alone or together with statin could be a potential therapeutic option in the treatment of atherosclerotic cardiovascular disease.


Cucurbitacin D Induces G2/M Phase Arrest and Apoptosis via the ROS/p38 Pathway in Capan-1 Pancreatic Cancer Cell Line.

  • Myeong-Sun Kim‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2020‎

Pancreatic cancer has a poor prognosis with a five-year survival rate of less than 10%. Moreover, chemotherapy is mostly rendered ineffective owing to chemotherapy resistance and cytotoxicity. Therefore, the development of effective therapeutic strategies and novel drugs against pancreatic cancer is an urgent need. Cucurbitacin D (CuD), a plant steroid derived from Trichosanthes kirilowii, is an anticancer agent effective against various cancer cell lines. However, the anticancer activity and molecular mechanism of CuD in pancreatic cancer remain unknown. Therefore, we aimed to investigate the anticancer activity and molecular mechanism of CuD in the human pancreatic cancer cell line, Capan-1. CuD induced cell cycle arrest at the G2/M phase, apoptosis, and reactive oxygen species generation in Capan-1 cell line. In addition, CuD induced the activation of the p38 MAPK signaling pathway that regulates apoptosis, which was also inhibited by N-acetyl-L-cysteine and the p38 inhibitor SB203580. These data suggest that CuD induces cell cycle arrest and apoptosis via the ROS/p38 pathway in Capan-1 pancreatic cancer cell line; hence, CuD is a promising candidate that should be explored further for its effectiveness as an anticancer agent against pancreatic cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: