Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Discriminating the molecular basis of hepatotoxicity using the large-scale characteristic molecular signatures of toxicants by expression profiling analysis.

  • Jung Woo Eun‎ et al.
  • Toxicology‎
  • 2008‎

Predicting the potential human health risk posed by chemical stressors has long been a major challenge for toxicologists, and the use of microarrays to measure responses to toxicologically relevant genes, and to identify selective, sensitive biomarkers of toxicity is a major application of predictive and discovery toxicology. To investigate this possibility, we investigated whether carcinogens (at doses known to induce liver tumors in chronic exposure bioassays) deregulate characteristic sets of genes in mice. Male C3H/He mice were dosed with two hepatocarcinogens (vinyl chloride (VC, 50-25 mg/kg), aldrin (AD, 0.8-0.4 mg/kg)), or two non-hepatocarcinogens (copper sulfate (CS, 150-60 mg/kg), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T, 150-60 mg/kg)). Large-scale molecular changes elicited by these four hepatotoxicants in liver tissues were analyzed using DNA microarray. Three days after administration, no significant phenotypic changes were induced by these four different hepatotoxicants in terms of histological examination or blood biochemical assay. However, unsupervised hierarchical analysis of gene expressional changes induced by hepatotoxicants resulted in two major gene subclusters on dendrogram, i.e., a carcinogen (VN, AD) and non-carcinogen group (CS, 2,4,5-T), and also revealed that distinct molecular signatures exist. These signatures were founded on well-defined functional gene categories and may differentiate genotoxic and non-genotoxic carcinogens. Furthermore, Venn diagram analysis allowed us to identify carcinogen and non-carcinogen-associated molecular signatures. Using statistical methods, we analyzed outlier genes for four different classes (genotoxic-, non-genotoxic-carcinogen, genotoxic-, non-genotoxic non-carcinogen) in terms of their potential to predict different modes-of-action. In conclusion, the identification of large-scale molecular changes in different hepatocarcinogen exposure models revealed that different types of hepatotoxicants are associated with different epigenetic changes and molecular pathways and that these large-scale characteristic molecular changes could be used as predictable toxicity markers.


NKX6.3 Is a Transcription Factor for Wnt/β-catenin and Rho-GTPase Signaling-Related Genes to Suppress Gastric Cancer Progression.

  • Jung Hwan Yoon‎ et al.
  • EBioMedicine‎
  • 2016‎

Despite ongoing research and recent progress, the prognosis for patients with advanced gastric cancer remains poor. Wnt/β-catenin and Rho-GTPase signaling pathways are known to play essential roles in malignant transformation and progression of various tumors, including gastric cancer. Here, we identify that NKX6 transcription factor, locus 3 (NKX6.3) binds directly to specific promoter regions of Wnt/β-catenin and Rho-GTPase pathway-related genes, resulting in inhibition of cancer cell migration and invasion. Additionally, we find that the expression level of NKX6.3 is involved in regulation of gastric cancer progression and expression of Wnt/β-catenin and Rho-GTPase pathway-related genes in clinical samples. These results suggest that NKX6.3 prevents EMT and cell migration, implying that NKX6.3 inactivation might be one of the key mechanisms of gastric cancer cell invasion and metastasis.


T-cell immune regulator 1 enhances metastasis in hepatocellular carcinoma.

  • Hee Doo Yang‎ et al.
  • Experimental & molecular medicine‎
  • 2018‎

Recurrence and metastasis are major challenges in the management of hepatocellular carcinoma (HCC) patients after resection. To identify a metastasis-associated gene signature, we performed comparative gene expression analysis with recurrent HCC tissues from HCC patients who underwent partial or total hepatectomy and from non-metastatic primary HCC tissues. From this, we were able to identify genes associated with HCC recurrence. TCIRG1 (T-Cell Immune Regulator 1) was one of the aberrantly overexpressed genes in patients with recurrent HCC who had undergone total hepatectomy. The significant overexpression of TCIRG1 was confirmed using the Liver Hepatocellular Carcinoma dataset from The Cancer Genome Atlas. High expression of TCIRG1 was significantly associated with poor 5-year disease-free and recurrence-free survival of HCC patients. TCIRG1 knockdown suppressed tumor cell growth and proliferation in HCC cell lines; caused a significant increase in the proportion of cells in the G1/S phase of cell cycle; induced cell death; suppressed the metastatic potential of HCC cells by selectively regulating the epithelial-mesenchymal transition (EMT) regulatory proteins E-cadherin, N-cadherin, Fibronectin, Snail and Slug; and significantly attenuated the metastatic potential of ras-transformed NIH-3T3 cells in vitro and in vivo. These findings suggest that TCIRG1 functions as a metastatic enhancer by modulating growth, death and EMT in HCC cells. TCIRG1 could be a therapeutic target for the treatment of liver malignancy and metastasis.


MiR-145 functions as a tumor suppressor by directly targeting histone deacetylase 2 in liver cancer.

  • Ji Heon Noh‎ et al.
  • Cancer letters‎
  • 2013‎

Aberrant regulation of histone deacetylase 2 (HDAC2) plays a pivotal role in the development of hepatocellular carcinoma (HCC), but, the underlying mechanism leading to HDAC2 overexpression is not well understood. We performed microRNA (miRNA) profiling analysis in a subset of HCCs, and identified four down-regulated miRNAs that may target HDAC2 in HCC. Ectopic expression of miRNA mimics evidenced that miR-145 suppresses HDAC2 expression in HCC cells. This treatment repressed cancer cell growth and recapitulated HDAC2 knockdown effects on HCC cells. In conclusion, we suggest that loss or suppression of miR-145 may cause aberrant overexpression of HDAC2 and promote HCC tumorigenesis.


Aberrant regulation of HDAC2 mediates proliferation of hepatocellular carcinoma cells by deregulating expression of G1/S cell cycle proteins.

  • Ji Heon Noh‎ et al.
  • PloS one‎
  • 2011‎

Histone deacetylase 2 (HDAC2) is crucial for embryonic development, affects cytokine signaling relevant for immune responses and is often significantly overexpressed in solid tumors; but little is known about its role in human hepatocellular carcinoma (HCC). In this study, we showed that targeted-disruption of HDAC2 resulted in reduction of both tumor cell growth and de novo DNA synthesis in Hep3B cells. We then demonstrated that HDAC2 regulated cell cycle and that disruption of HDAC2 caused G1/S arrest in cell cycle. In G1/S transition, targeted-disruption of HDAC2 selectively induced the expression of p16(INK4A) and p21(WAF1/Cip1), and simultaneously suppressed the expression of cyclin D1, CDK4 and CDK2. Consequently, HDAC2 inhibition led to the down-regulation of E2F/DP1 target genes through a reduction in phosphorylation status of pRb protein. In addition, sustained suppression of HDAC2 attenuated in vitro colony formation and in vivo tumor growth in a mouse xenograft model. Further, we found that HDAC2 suppresses p21(WAF1/Cip1) transcriptional activity via Sp1-binding site enriched proximal region of p21(WAF1/Cip1) promoter. In conclusion, we suggest that the aberrant regulation of HDAC2 may play a pivotal role in the development of HCC through its regulation of cell cycle components at the transcription level providing HDAC2 as a relevant target in liver cancer therapy.


NKX6.3 controls gastric differentiation and tumorigenesis.

  • Jung Hwan Yoon‎ et al.
  • Oncotarget‎
  • 2015‎

NKX6.3 transcription factor is known to be an important regulator in gastric mucosal epithelial differentiation. The present study aimed to investigate whether NKX6.3 acts as an essential tumor suppressor in gastric carcinogenesis. Absent or reduced protein expression and decreased DNA copy number and mRNA transcript of the NKX6.3 gene were frequently observed in gastric cancers. Overexpression of NKX6.3 in AGSNKX6.3 and MKN1NKX6.3 cells markedly arrested cell proliferation by inhibiting cell cycle progression and induced apoptosis through both death receptor- and mitochondrial-pathways. In addition, stable NKX6.3 transfectants increased the expression of gastric differentiation markers, including SOX2 and Muc5ac, and decreased the expression of intestinal differentiation markers, CDX2 and Muc2. In ChIP-cloning and sequencing analyses, NKX6.3 coordinated a repertoire of target genes, some of which are clearly associated with cell cycle, differentiation and death. In particular, NKX6.3 transcriptional factor was found to bind specifically to the upstream sequences of GKN1, a gastric-specific tumor suppressor, and dramatically increase expression of the latter. Furthermore, there was a positive correlation between NKX6.3 and GKN1 expression in non-cancerous gastric mucosae. Thus, these data suggest that NKX6.3 may control the fate of gastric mucosal cells and function as a gastric tumor suppressor.


Anti-SARS-CoV-2 Neutralizing Antibody Responses after Two Doses of ChAdOx1 nCoV-19 vaccine (AZD1222) in Healthcare Workers.

  • Sera Lim‎ et al.
  • Infection & chemotherapy‎
  • 2022‎

The kinetics of neutralizing antibodies against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) play an important role in evaluating vaccine efficacy and durability, herd immunity, additional vaccination, and prediction models of immune protection against coronavirus disease 2019.


Assessment and diagnostic relevance of novel serum biomarkers for early decision of ST-elevation myocardial infarction.

  • Hun-Jun Park‎ et al.
  • Oncotarget‎
  • 2015‎

Blood transcriptome reflects the status of diseases, and characteristic molecular signature provides a novel window on gene expression preceding acute coronary events. We aim to determine blood transcriptome-based molecular signature of acute coronary syndrome (ACS), and to identify novel serum biomarkers for early stage ST-segment-elevation myocardial infarction (STEMI). We obtained peripheral blood from the patients with ACS who visited emergency department within 4 hours after the onset of chest pain: STEMI (n = 10), Non-ST-segment-elevation MI (NSTEMI, n = 10) and unstable angina (UA, n = 11). Blood transcriptome scans revealed that a characteristic gene expression change exists in STEMI, resulting in 531 outlier genes as STEMI molecular signature (Welch's t test, P < 0.05). Another analysis with a set of blood samples of patients with STEMI (n = 7) before and 7 days after the primary percutaneous coronary intervention (n = 7) and normal control (n = 10) evidenced that STEMI molecular signature directly reflects the onset of STEMI pathogenesis. From the two sets of transcriptome-based STEMI signatures, we identified 10 genes encoding transmembrane or secretory proteins that are highly expressed in STEMI. We validated blood protein expression levels of these 10 putative biomarkers in 40 STEMI and 32 healthy subjects by ELISA. Data suggested that PGLYRP1, IRAK3 and VNN3 are more specific and sensitive diagnostic biomarkers for STEMI than traditional CK-MB or troponin.Blood transcriptome scans of ACS evidenced early stage molecular markers for STEMI. Here, we report novel biomarkers to diagnose STEMI at emergency department in hospitals by a simple ELISA method.


MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer.

  • Hyung Seok Kim‎ et al.
  • Oncotarget‎
  • 2015‎

MicroRNA-31 (miR-31) is among the most frequently altered microRNAs in human cancers and altered expression of miR-31 has been detected in a large variety of tumor types, but the functional role of miR-31 still hold both tumor suppressive and oncogenic roles in different tumor types. MiR-31 expression was down-regulated in a large cohort of hepatocellular carcinoma (HCC) patients, and low expression of miR-31 was significantly associated with poor prognosis of HCC patients. Ectopic expression of miR-31 mimics suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins. Additional study evidenced miR-31 directly to suppress HDAC2 and CDK2 expression by inhibiting mRNA translation in HCC cells. We also found that ectopic expression of miR-31 mimics reduced metastatic potential of HCC cells by selectively regulating epithelial-mesenchymal transition (EMT) regulatory proteins such as N-cadherin, E-cadherin, vimentin and fibronectin. HCC tissues derived from chemical-induced rat liver cancer models validated that miR-31 expression is significantly down-regulated, and that those cell cycle- and EMT-regulatory proteins are deregulated in rat liver cancer. Overall, we suggest that miR-31 functions as a tumor suppressor by selectively regulating cell cycle and EMT regulatory proteins in human hepatocarcinogenesis providing a novel target for the molecular treatment of liver malignancies.


Functional analysis of the NH2-terminal hydrophobic region and BRICHOS domain of GKN1.

  • Jung Hwan Yoon‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

Gastrokine 1 (GKN1) protects the gastric antral mucosa and promotes healing by facilitating restitution and proliferation after injury. GKN1 is down-regulated in Helicobacter pylori-infected gastric epithelial cells and loss of GKN1 expression is tightly associated with gastric carcinogenesis. However, the underlying mechanisms as a tumor suppressor are largely unknown. Presently, the hydrophobic region and BRICHOS domain of GKN1, pGKN1(D13N), pGKN1(Δ68-199), and pGKN1(Δ1-67,165-199) were shown to suppress gastric cancer cell growth and recapitulate GKN1 functions. As well, the hydrophobic region and BRICHOS domain of GKN1 had a synergistic anti-cancer effect with 5-FU on tumor cell growth, implying that the NH2-terminal hydrophobic region and BRICHOS domain of GKN1 are sufficient for tumor suppression, thereby suggesting a therapeutic intervention for gastric cancer. Also, its domain inducing endogenous miR-185 directly targeted the epigenetic effectors DNMT1 and EZH2 in gastric cancer cells. Our results suggest that the NH2-terminal hydrophobic region and BRICHOS domain of GKN1 are sufficient for its tumor suppressor activities.


Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer.

  • Hee Doo Yang‎ et al.
  • Oncotarget‎
  • 2016‎

H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy.


NKX6.3 protects against gastric mucosal atrophy by downregulating β-amyloid production.

  • Jung Hwan Yoon‎ et al.
  • World journal of gastroenterology‎
  • 2019‎

Atrophic gastritis is characterized by loss of appropriate glands and reduction in gastric secretory function due to chronic inflammatory processes in gastric mucosa. Moreover, atrophic gastritis is considered as a precancerous condition of gastric cancer. However, little is known about the molecular mechanism underlying gastric mucosal atrophy and its contribution to gastric carcinogenesis. Thus, we hypothesized that transcription factor NKX6.3 might be involved in maintaining gastric epithelial homeostasis by regulating amyloid β (Aβ) production.


Antifibrotic effects of pentoxifylline improve the efficacy of gemcitabine in human pancreatic tumor xenografts.

  • Jung Ho Kim‎ et al.
  • Cancer science‎
  • 2017‎

We investigated the combinatorial effects of pentoxifylline (PTX) on the efficacy of gemcitabine (GEM) in a human pancreatic tumor xenograft model. PTX significantly improved the efficacy of GEM, as shown by a 50% reduction in tumor growth rate at 4 weeks of treatment compared with that in animals given GEM alone. The fluorescent drug doxorubicin (DOX) was used to test whether drug delivery was improved by PTX, contributing to the improved efficacy of GEM. PTX given for 2 weeks prior to giving DOX improved drug distribution by 1.8- to 2.2-fold with no changes in vessel density, suggesting that improvement in drug delivery was not related to the vascular mechanism. Instead, collagen I content in tumor stroma was significantly reduced, as was the expression of alpha-smooth muscle actin of cancer-associated fibroblasts and connective tissue growth factor (CTGF) by PTX pretreatment. Overall, our data demonstrated that increased efficacy of GEM by PTX was associated with improved drug delivery to tumor tissue, which may be attributed to decreased expression of CTGF and subsequent reduction in the stromal collagen matrix in the pancreatic ductal adenocarcinoma tumor. These results support the usefulness of PTX in combination with chemotherapy for targeting drug delivery barriers associated with the stromal matrix, which should be further evaluated for clinical development.


Decreased expression of annexin A10 in gastric cancer and its overexpression in tumor cell growth suppression.

  • Jeong Kyu Kim‎ et al.
  • Oncology reports‎
  • 2010‎

Gastric carcinoma is the most common neoplasm in Southeast Asian populations and is the second leading cause of cancer death worldwide. Annexins are a family of cytosolic calcium and membrane binding proteins that have been implicated in a wide variety of cell functions. Recent studies have suggested that Annexin A10 (ANXA10), a member of the Annexin protein family, is down-regulated in specific types of cancer. However, the underlying molecular mechanisms of the dysregulation of ANXA10 remain to be elucidated. In the present study, to investigate the biological effects of ANXA10 on gastric carcinoma, aberrant expression of ANXA10 was evaluated by Western blot analysis, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC), in gastric cancer tissues and cell lines. Decreased expression of ANXA10 was observed in five selected gastric cancer tissues compared to the normal surrounding mucosa. In the cancer cell lines, seven out of nine selected gastric cancer cell lines had no detectable ANXA10 by RT-PCR. Among these, when an ANXA10 expressing plasmid was introduced into MKN-1 cells, cell growth was suppressed and apoptosis augmented. The results of this study demonstrated that ANXA10 was aberrantly regulated in gastric carcinoma and suggests that down-regulation of ANXA10 might be involved in gastric carcinogenesis. In addition, ANXA10 may play a role, as a tumor suppressor, in the development and progression of gastric cancer.


Amplification of the UQCRFS1 Gene in Gastric Cancers.

  • Kyong Hwa Jun‎ et al.
  • Journal of gastric cancer‎
  • 2012‎

The specific aim of this study is to unravel a DNA copy number alterations, and to search for novel genes that are associated with the development of Korean gastric cancer.


Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine.

  • Jung Woo Eun‎ et al.
  • Toxicology and applied pharmacology‎
  • 2009‎

The amphetamine derivative (+/-)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significant gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.


The diagnostic value of serum gastrokine 1 (GKN1) protein in gastric cancer.

  • Jung Hwan Yoon‎ et al.
  • Cancer medicine‎
  • 2019‎

Early detection of cancer provides effective treatment and saves lives. The objective of this study was to determine whether serum gastrokine 1 (GKN1) protein is a gastric cancer-specific diagnostic biomarker. The serum concentration of GKN1 in healthy individuals (median: 6.34 ng/μL, interquartile range (IQR): 5.66-7.54 ng/μL) was significantly higher compared with the levels in gastric cancer patients (median: 3.48 ng/μL, IQR: 2.90-4.11 ng/μL; P < .0001). At the optimum cutoff (4.94 ng/μL) of serum GKN1 protein, the sensitivity and specificity were 91.2% and 96.0%, respectively, for gastric cancer. Using serum GKN1 protein as the diagnostic reference, the ROC curve showed a satisfactory diagnostic efficacy with an AUC value of 0.9954 (95% CI 0.9919-0.9988) and Youden index of 0.8740. In addition, the diagnostic accuracy of the serum GKN1 protein at the optimum cutoff was 0.9675. Interestingly, serum GKN1 concentrations in patients with advanced gastric cancer (AGC; median: 3.11 ng/μL, IQR: 2.72-3.72 ng/μL) were lower than in patients with early gastric cancer (EGC; median: 4.31 ng/μL, IQR: 3.88-4.88 ng/μL). The diagnostic accuracies at the optimum serum GKN1 cutoff were 0.8912 and 0.9589 for EGC and AGC, respectively. Furthermore, the serum GKN1 concentrations robustly discriminated the patients with gastric cancer from the patients with colorectal, liver, lung, breast, pancreatic, ovary, and prostatic cancers with AUC values greater than 0.94. These data suggest that serum GKN1 is a promising and highly specific diagnostic biomarker for the prompt detection of early and advanced gastric cancers.


ADAR1-dependent miR-3144-3p editing simultaneously induces MSI2 expression and suppresses SLC38A4 expression in liver cancer.

  • Hyung Seok Kim‎ et al.
  • Experimental & molecular medicine‎
  • 2023‎

Aberrant adenosine-to-inosine (A-to-I) RNA editing, catalyzed by adenosine deaminase acting on double-stranded RNA (ADAR), has been implicated in various cancers, but the mechanisms by which microRNA (miRNA) editing contributes to cancer development are largely unknown. Our multistage hepatocellular carcinogenesis transcriptome data analyses, together with publicly available data, indicated that ADAR1 was the most profoundly dysregulated gene among RNA-editing enzyme family members in liver cancer. Targeted inactivation of ADAR1 inhibited the in vitro tumorigenesis of liver cancer cells. An integrative computational analyses of RNA-edited hotspots and the known editing frequency of miRNAs suggested that the miRNA miR-3144-3p was edited by ADAR1 during liver cancer progression. Specifically, ADAR1 promoted A-to-I editing of canonical miR-3144-3p to replace the adenosine at Position 3 in the seed region with a guanine (ED_miR-3144-3p(3_A < G)) in liver cancer cells. We then demonstrated that Musashi RNA-binding protein 2 (MSI2) was a specific target of miR-3144-3p and that MSI2 overexpression was due to excessive ADAR1-dependent over-editing of canonical miR-3144-3p in liver cancer. In addition, target prediction analyses and validation experiments identified solute carrier family 38 member 4 (SLC38A4) as a specific gene target of ED_miR-3144-3p(3_A < G). The ectopic expression of both ADAR1 and the ED_miR-3144-3p(3_A < G) mimic enhanced mitotic activities, and ADAR1 suppressed SLC38A4 expression in liver cancer cells. Treatments with mouse-specific ADAR1-, MSI2-siRNA-, or SLC38A4-expressing plasmids suppressed tumorigenesis and tumor growth in a mouse model of spontaneous liver cancer. Our findings suggest that the aberrant regulation of ADAR1 augments oncogenic MSI2 effects by excessively editing canonical miR-3144-3p and that the resultant ED_miR-3144-3p(3_A < G) simultaneously suppresses tumor suppressor SLC38A4 expression, contributing to hepatocellular carcinogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: