Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Spectral-domain optical coherence tomography of the rodent eye: highlighting layers of the outer retina using signal averaging and comparison with histology.

  • Adeline Berger‎ et al.
  • PloS one‎
  • 2014‎

Spectral-Domain Optical Coherence Tomography (SD-OCT) is a widely used method to observe retinal layers and follow pathological events in human. Recently, this technique has been adapted for animal imaging. This non-invasive technology brings a cross-sectional visualization of the retina, which permits to observe precisely each layer. There is a clear expansion of the use of this imaging modality in rodents, thus, a precise characterization of the different outer retinal layers observed by SD-OCT is now necessary to make the most of this technology. The identification of the inner strata until the outer nuclear layer has already been clearly established, while the attribution of the layers observed by SD-OCT to the structures corresponding to photoreceptors segments and retinal pigment epithelium is much more questionable. To progress in the understanding of experimental SD-OCT imaging, we developed a method for averaging SD-OCT data to generate a mean image allowing to better delineate layers in the retina of pigmented and albino strains of mice and rats. It allowed us to locate precisely the interface between photoreceptors and retinal pigment epithelium and to identify unambiguously four layers corresponding to the inner and outer parts of photoreceptors segments. We show that the thickness of the various layers can be measured as accurately in vivo on SD-OCT images, than post-mortem by a morphometric analysis of histological sections. We applied SD-OCT to different models and demonstrated that it allows analysis of focal or diffuse retinal pathological processes such as mutation-dependent damages or light-driven modification of photoreceptors. Moreover, we report a new method of combined use of SD-OCT and integration to quantify laser-induced choroidal neovascularization. In conclusion, we clearly demonstrated that SD-OCT represents a valuable tool for imaging the rodent retina that is at least as accurate as histology, non-invasive and allows longitudinal follow-up of the same animal.


Delta-like 4 inhibits choroidal neovascularization despite opposing effects on vascular endothelium and macrophages.

  • Serge Camelo‎ et al.
  • Angiogenesis‎
  • 2012‎

Inflammatory neovascularization, such as choroidal neovascularization (CNV), occur in the presence of Notch expressing macrophages. DLL4s anti-angiogenic effect on endothelial cells (EC) has been widely recognized, but its influence on Notch signaling on macrophages and its overall effect in inflammatory neovascularization is not well understood. We identified macrophages and ECs as the main Notch 1 and Notch 4 expressing cells in CNV. A soluble fraction spanning Ser28-Pro525 of the murine extracellular DLL4 domain (sDLL4/28-525) activated the Notch pathway, as it induces Notch target genes in macrophages and ECs and inhibited EC proliferation and vascular sprouting in aortic rings. In contrast, sDLL4/28-525 increased pro-angiogenic VEGF, and IL-1β expression in macrophages responsible for increased vascular sprouting observed in aortic rings incubated in conditioned media from sDLL4/28-525 stimulated macrophages. In vivo, Dll4(+/-) mice developed significantly more CNV and sDLL4/28-525 injections inhibited CNV in Dll4(+/-) CD1 mice. Similarly, sDLL4/28-525 inhibited CNV in C57Bl6 and its effect was reversed by a γ-secretase inhibitor that blocks Notch signaling. The inhibition occurred despite increased VEGF, IL-1β expression in infiltrating inflammatory macrophages in sDLL4/28-525 treated mice and might be due to direct inhibition of EC proliferation in laser-induced CNV as demonstrated by EdU labelling in vivo. In conclusion, Notch activation on macrophages and ECs leads to opposing effects in inflammatory neovascularization in situations such as CNV.


Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration.

  • Olivier Levy‎ et al.
  • EMBO molecular medicine‎
  • 2015‎

Physiologically, the retinal pigment epithelium (RPE) expresses immunosuppressive signals such as FAS ligand (FASL), which prevents the accumulation of leukocytes in the subretinal space. Age-related macular degeneration (AMD) is associated with a breakdown of the subretinal immunosuppressive environment and chronic accumulation of mononuclear phagocytes (MPs). We show that subretinal MPs in AMD patients accumulate on the RPE and express high levels of APOE. MPs of Cx3cr1(-/-) mice that develop MP accumulation on the RPE, photoreceptor degeneration, and increased choroidal neovascularization similarly express high levels of APOE. ApoE deletion in Cx3cr1(-/-) mice prevents pathogenic age- and stress-induced subretinal MP accumulation. We demonstrate that increased APOE levels induce IL-6 in MPs via the activation of the TLR2-CD14-dependent innate immunity receptor cluster. IL-6 in turn represses RPE FasL expression and prolongs subretinal MP survival. This mechanism may account, in part, for the MP accumulation observed in Cx3cr1(-/-) mice. Our results underline the inflammatory role of APOE in sterile inflammation in the immunosuppressive subretinal space. They provide rationale for the implication of IL-6 in AMD and open avenues toward therapies inhibiting pathogenic chronic inflammation in late AMD.


Thinning of the RPE and choroid associated with T lymphocyte recruitment in aged and light-challenged mice.

  • Serge Camelo‎ et al.
  • Molecular vision‎
  • 2015‎

Thinning of the RPE and the underlying vascular layer, the choroid, is observed with age in many human eye disorders. The reasons for this thinning are ill-defined. Here, we highlight the possible role of T lymphocyte recruitment in choroidoretinal thinning in aged and light-challenged mice.


CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents.

  • Marianne Houssier‎ et al.
  • PLoS medicine‎
  • 2008‎

In the Western world, a major cause of blindness is age-related macular degeneration (AMD). Recent research in angiogenesis has furthered the understanding of choroidal neovascularization, which occurs in the "wet" form of AMD. In contrast, very little is known about the mechanisms of the predominant, "dry" form of AMD, which is characterized by retinal atrophy and choroidal involution. The aim of this study is to elucidate the possible implication of the scavenger receptor CD36 in retinal degeneration and choroidal involution, the cardinal features of the dry form of AMD.


CD36 Deficiency Inhibits Retinal Inflammation and Retinal Degeneration in Cx3cr1 Knockout Mice.

  • Sophie Lavalette‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Background: CD36, a member of the class B scavenger receptor family, participates in Toll-like receptor signaling on mononuclear phagocytes (MP) and can promote sterile pathogenic inflammation. We here analyzed the effect of CD36 deficiency on retinal inflammation and photoreceptor degeneration, the hallmarks of age-related macular degeneration (AMD), that characterize Cx3cr1-/-mice. Methods: We analyzed subretinal MP accumulation, and cone- and rod-degeneration in light-challenged and aged, CD36 competent or deficient, hyper-inflammatory Cx3cr1-/- mice, using histology and immune-stained retinal flatmounts. Monocytes (Mo) were subretinally adoptively transferred to evaluate their elimination rate from the subretinal space and Interleukin 6 (IL-6) secretion from cultured Mo-derived cells (MdCs) of the different mouse strains were analyzed. Results: CD36 deficient Cx3cr1-/- mice were protected against age- and light-induced subretinal inflammation and associated cone and rod degeneration. CD36 deficiency in Cx3cr1-/- MPs inhibited their prolonged survival in the immune-suppressive subretinal space and reduced the exaggerated IL-6 secretion observed in Cx3cr1-/- MPs that we previously showed leads to increased subretinal MP survival. Conclusion:Cd36 deficiency significantly protected hyperinflammatory Cx3cr1-/- mice against subretinal MP accumulation and associated photoreceptor degeneration. The observed CD36-dependent induction of pro-inflammatory IL-6 might be at least partially responsible for the prolonged MP survival in the immune-suppressive environment and its pathological consequences on photoreceptor homeostasis.


CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice.

  • Florian Sennlaub‎ et al.
  • EMBO molecular medicine‎
  • 2013‎

Atrophic age-related macular degeneration (AMD) is associated with the subretinal accumulation of mononuclear phagocytes (MPs). Their role in promoting or inhibiting retinal degeneration is unknown. We here show that atrophic AMD is associated with increased intraocular CCL2 levels and subretinal CCR2(+) inflammatory monocyte infiltration in patients. Using age- and light-induced subretinal inflammation and photoreceptor degeneration in Cx3cr1 knockout mice, we show that subretinal Cx3cr1 deficient MPs overexpress CCL2 and that both the genetic deletion of CCL2 or CCR2 and the pharmacological inhibition of CCR2 prevent inflammatory monocyte recruitment, MP accumulation and photoreceptor degeneration in vivo. Our study shows that contrary to CCR2 and CCL2, CX3CR1 is constitutively expressed in the retina where it represses the expression of CCL2 and the recruitment of neurotoxic inflammatory CCR2(+) monocytes. CCL2/CCR2 inhibition might represent a powerful tool for controlling inflammation and neurodegeneration in AMD.


Neonatal hyperglycemia inhibits angiogenesis and induces inflammation and neuronal degeneration in the retina.

  • Elsa Kermorvant-Duchemin‎ et al.
  • PloS one‎
  • 2013‎

Recent evidence suggests that transient hyperglycemia in extremely low birth weight infants is strongly associated with the occurrence of retinopathy of prematurity (ROP). We propose a new model of Neonatal Hyperglycemia-induced Retinopathy (NHIR) that mimics many aspects of retinopathy of prematurity. Hyperglycemia was induced in newborn rat pups by injection of streptozocine (STZ) at post natal day one (P1). At various time points, animals were assessed for vascular abnormalities, neuronal cell death and accumulation and activation of microglial cells. We here report that streptozotocin induced a rapid and sustained increase of glycemia from P2/3 to P6 without affecting rat pups gain weight or necessitating insulin treatment. Retinal vascular area was significantly reduced in P6 hyperglycemic animals compared to control animals. Hyperglycemia was associated with (i) CCL2 chemokine induction at P6, (ii) a significant recruitment of inflammatory macrophages and an increase in total number of Iba+ macrophages/microglia cells in the inner nuclear layer (INL), and (iii) excessive apoptosis in the INL. NHIR thereby reproduces several aspects of ischemic retinopathies, including ROP and diabetic retinopathies, and might be a useful model to decipher hyperglycemia-induced cellular and molecular mechanisms in the small rodent.


New Quinoxaline Derivatives as Dual Pim-1/2 Kinase Inhibitors: Design, Synthesis and Biological Evaluation.

  • Bruno Oyallon‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Proviral integration site for Moloney murine leukemia virus (Pim)-1/2 kinase overexpression has been identified in a variety of hematologic (e.g., multiple myeloma or acute myeloid leukemia (AML)) and solid (e.g., colorectal carcinoma) tumors, playing a key role in cancer progression, metastasis, and drug resistance, and is linked to poor prognosis. These kinases are thus considered interesting targets in oncology. We report herein the design, synthesis, structure-activity relationships (SAR) and in vitro evaluations of new quinoxaline derivatives, acting as dual Pim1/2 inhibitors. Two lead compounds (5c and 5e) were then identified, as potent submicromolar Pim-1 and Pim-2 inhibitors. These molecules were also able to inhibit the growth of the two human cell lines, MV4-11 (AML) and HCT-116 (colorectal carcinoma), expressing high endogenous levels of Pim-1/2 kinases.


Expression Profiling of Calcium Channels and Calcium-Activated Potassium Channels in Colorectal Cancer.

  • Sajida Ibrahim‎ et al.
  • Cancers‎
  • 2019‎

Background: Colorectal cancer (CRC) is a highly devastating cancer. Ca2+-dependent channels are now considered key regulators of tumor progression. In this study, we aimed to investigate the association of non-voltage gated Ca2+ channels and Ca2+-dependent potassium channels (KCa) with CRC using the transcriptional profile of their genes. Methods: We selected a total of 35 genes covering KCa channels KCNN1-4, KCNMA1 and their subunits KCNMB1-4, endoplasmic reticulum (ER) calcium sensors STIM1 and STIM2, Ca2+ channels ORAI1-3 and the family of cation channels TRP (TRPC1-7, TRPA1, TRPV1/2,4-6 and TRPM1-8). We analyzed their expression in two public CRC datasets from The Cancer Genome Atlas (TCGA) and GSE39582. Results: KCNN4 and TRPM2 were induced while KCNMA1 and TRPM6 were downregulated in tumor tissues comparing to normal tissues. In proximal tumors, STIM2 and KCNN2 were upregulated while ORAI2 and TRPM6 were downregulated. ORAI1 decreased in lymph node metastatic tumors. TRPC1 and ORAI3 predicted poor prognosis in CRC patients. Moreover, we found that ORAI3/ORAI1 ratio is increased in CRC progression and predicted poor prognosis. Conclusions: KCa and Ca2+ channels could be important contributors to CRC initiation and progression. Our results provide new insights on KCa and Ca2+ channels remodeling in CRC.


Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization.

  • Elisa Dominguez‎ et al.
  • PloS one‎
  • 2015‎

Branch retinal vein occlusion (BRVO) leads to extensive vascular remodeling and is important cause of visual impairment. Although the vascular morphological changes following experimental vein occlusion have been described in a variety of models using angiography, the underlying cellular events are ill defined.


Curcumin and NCLX inhibitors share anti-tumoral mechanisms in microsatellite-instability-driven colorectal cancer.

  • Maxime Guéguinou‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2022‎

Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX.


Role of the chemokine receptor CX3CR1 in the mobilization of phagocytic retinal microglial cells.

  • William Raoul‎ et al.
  • Journal of neuroimmunology‎
  • 2008‎

We recently showed that subretinal CX3CR1-dependent microglial cell (MC) accumulation may lead to age-related macular degeneration. The fate of MC after engulfing retinal debris is poorly understood. Severe photoreceptor degeneration was observed 40days after exposure to bright light in CX3CR1-deficient but not control mice, and more MCs accumulated in the subretinal space of the former than the latter. To study the fate of subretinal MCs in CX3CR1 competent animals, we used a dystrophic rat model in which abundant subretinal MC accumulation is observed secondary to retinal degeneration. In dystrophic rats, MCs containing rhodopsin or rod outer segment (ROS) debris were found outside the outer retina at sites suggesting choroidal and ciliary egress. In conclusion, our data indicate that MC accumulation at injury sites is independent of CX3CR1 and precedes photoreceptor degeneration. The ectopic presence of rhodopsin-positive MCs suggests that CX3CR1 participates in MC egress from the outer retina.


Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice.

  • William Raoul‎ et al.
  • Respiratory research‎
  • 2007‎

Bone marrow -derived cells (BMDCs) can either limit or contribute to the process of pulmonary vascular remodeling. Whether the difference in their effects depends on the mechanism of pulmonary hypertension (PH) remains unknown.


SK4 oncochannels regulate calcium entry and promote cell migration in KRAS-mutated colorectal cancer.

  • Sajida Ibrahim‎ et al.
  • Cell calcium‎
  • 2021‎

Colorectal cancer (CRC) metastases are the main cause of CRC mortality. Intracellular Ca2+ regulates cell migration and invasion, key factors for metastases. Ca2+ also activates Ca2+-dependent potassium channels which in turn affect Ca2+ driving force. We have previously reported that the expression of the Ca2+ activated potassium channel KCNN4 (SK4) is higher in CRC primary tumors compared to normal tissues. Here, we aimed to investigate the role of SK4 in the physiology of CRC.


Mo-derived perivascular macrophage recruitment protects against endothelial cell death in retinal vein occlusion.

  • Christophe Roubeix‎ et al.
  • Journal of neuroinflammation‎
  • 2019‎

To decipher the role of monocyte-derived macrophages (Mφs) in vascular remodeling of the occluded vein following experimental branch retinal vein occlusion (BRVO).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: