Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Harnessing 3D models of mammary epithelial morphogenesis: An off the beaten path approach to identify candidate biomarkers of early stage breast cancer.

  • Stefano Rossetti‎ et al.
  • Cancer letters‎
  • 2016‎

Regardless of the etiological factor, an aberrant morphology is the common hallmark of ductal carcinoma in situ (DCIS), which is a highly heterogeneous disease. To test if critical core morphogenetic mechanisms are compromised by different mutations, we performed proteomics analysis of five mammary epithelial HME1 mutant lines that develop a DCIS-like morphology in three dimensional (3D) culture. Here we show first, that all HME1 mutant lines share a common protein signature highlighting an inverse deregulation of two annexins, ANXA2 and ANXA8. Either ANXA2 downregulation or ANXA8 upregulation in the HME1 cell context are per se sufficient to confer a 3D DCIS-like morphology. Seemingly, different mutations impinged on a common mechanism that differentially regulates the two annexins. Second, we show that ANXA8 expression is significantly higher in DCIS tissue samples versus normal breast tissue and atypical ductal hyperplasia (ADH). Apparently, ANXA8 expression is significantly more upregulated in ER-negative versus ER-positive cases, and significantly correlates with tumor stage, grade and positive lymph node. Based on our study, 3D mammary morphogenesis models can be an alternate/complementary strategy for unraveling new DCIS mechanisms and biomarkers.


Analytical variables influencing the performance of a miRNA based laboratory assay for prediction of relapse in stage I non-small cell lung cancer (NSCLC).

  • Jesper Dahlgaard‎ et al.
  • BMC research notes‎
  • 2011‎

Laboratory assays are needed for early stage non-small lung cancer (NSCLC) that can link molecular and clinical heterogeneity to predict relapse after surgical resection. We technically validated two miRNA assays for prediction of relapse in NSCLC. Total RNA from seventy-five formalin-fixed and paraffin-embedded (FFPE) specimens was extracted, labeled and hybridized to Affymetrix miRNA arrays using different RNA input amounts, ATP-mix dilutions, array lots and RNA extraction- and labeling methods in a total of 166 hybridizations. Two combinations of RNA extraction- and labeling methods (assays I and II) were applied to a cohort of 68 early stage NSCLC patients.


Prognostic value of histone chaperone FACT subunits expression in breast cancer.

  • Kristopher Attwood‎ et al.
  • Breast cancer (Dove Medical Press)‎
  • 2017‎

Understanding the underlying reasons for tumor aggressiveness, such as why some tumors grow slowly and locally, while others rapidly progress to a lethal metastatic disease, is still limited. This is especially critical in breast cancer (BrCa) due to its high prevalence and also due to the possibility that it can be detected early. Several oncogenes and tumor suppressors have been identified and are used in the prognosis and treatment of BrCa. However, even with these markers, the outcome within BrCa subtypes is highly variable. Chromatin organization has long been acknowledged as a factor that plays an important role in tumor progression, but molecular mechanisms defining chromatin dynamics are largely missing. We have recently found that histone chaperone FACT (facilitates chromatin transcription) is overexpressed in ~18-20% of BrCa cases. FACT is elevated upon transformation of mammary epithelial cells and is essential for viability of tumor cells. BrCa cells with high FACT have a more aggressive transcriptional program than those with low FACT cells. Based on this we propose that FACT may be a marker of aggressive BrCa. In this study, we aimed to comprehensively characterize the pattern of FACT expression in BrCa in relation to other molecular and clinical prognostic markers. We developed and tested an assay for the detection and quantitation of protein levels of both FACT subunits, SSRP1, and SPT16, in clinical samples. We compared the value of mRNA and protein as potential markers of disease aggressiveness using a large cohort of patients (n=1092). We demonstrated that only SSRP1 immunohistochemical staining is a reliable indicator of FACT levels in tumor samples. High SSRP1 correlated with known markers of poor prognosis, such as negative hormone receptor status, presence of Her2, high-grade tumors, and tumors of later clinical stage. At the same time, no strong correlation between SSRP1 expression and survival was detected when all samples were analyzed together. Clear trend toward longer survival of patients with low or no SSRP1 expression in tumor samples was seen in several subgroups of patients, and most importantly significant association of high SSRP1 expression with shorter disease-free survival was detected in patients with early-stage and low-grade BrCa, the category of patients with the highest demand in predictive marker of disease progression.


Hypoxic activation of PFKFB4 in breast tumor microenvironment shapes metabolic and cellular plasticity to accentuate metastatic competence.

  • Tao Dai‎ et al.
  • Cell reports‎
  • 2022‎

Cancer cells encounter a hostile tumor microenvironment (TME), and their adaptations to metabolic stresses determine metastatic competence. Here, we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 (PFKFB4) is induced in hypoxic tumors acquiring metabolic plasticity and invasive phenotype. In mouse models of breast cancer, genetic ablation of PFKFB4 significantly delays distant organ metastasis, reducing local lymph node invasion by suppressing expression of invasive gene signature including integrin β3. Photoacoustic imaging followed by metabolomics analyses of hypoxic tumors show that PFKFB4 drives metabolic flexibility, enabling rapid detoxification of reactive oxygen species favoring survival under selective pressure. Mechanistically, hypoxic induction triggers nuclear translocation of PFKFB4 accentuating non-canonical transcriptional activation of HIF-1α, and breast cancer patients with increased nuclear PFKFB4 in their tumors are found to be significantly associated with poor prognosis. Our findings imply that PFKFB4 induction is crucial for tumor cell adaptation in the hypoxic TME that determines metastatic competence.


A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60.

  • Rahul Kumar‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

Mitochondrial proteostasis, regulated by the mitochondrial unfolded protein response (UPRmt), is crucial for maintenance of cellular functions and survival. Elevated oxidative and proteotoxic stress in mitochondria must be attenuated by the activation of a ubiquitous UPRmt to promote prostate cancer (PCa) growth. Here we show that the 2 key components of the UPRmt, heat shock protein 60 (HSP60, a mitochondrial chaperonin) and caseinolytic protease P (ClpP, a mitochondrial protease), were required for the development of advanced PCa. HSP60 regulated ClpP expression via c-Myc and physically interacted with ClpP to restore mitochondrial functions that promote cancer cell survival. HSP60 maintained the ATP-producing functions of mitochondria, which activated the β-catenin pathway and led to the upregulation of c-Myc. We identified a UPRmt inhibitor that blocked HSP60's interaction with ClpP and abrogated survival signaling without altering HSP60's chaperonin function. Disruption of HSP60-ClpP interaction with the UPRmt inhibitor triggered metabolic stress and impeded PCa-promoting signaling. Treatment with the UPRmt inhibitor or genetic ablation of Hsp60 inhibited PCa growth and progression. Together, our findings demonstrate that the HSP60-ClpP-mediated UPRmt is essential for prostate tumorigenesis and the HSP60-ClpP interaction represents a therapeutic vulnerability in PCa.


Cadherin-11 increases tumor cell proliferation and metastatic potential via Wnt pathway activation.

  • Yayu Liu‎ et al.
  • Molecular oncology‎
  • 2023‎

During epithelial-mesenchymal transition (EMT) in cancer progression, tumor cells switch cadherin profile from E-cadherin to cadherin-11 (CDH11), which is accompanied by increased invasiveness and metastatic activity. However, the mechanism through which CDH11 may affect tumor growth and metastasis remains elusive. Here, we report that CDH11 was highly expressed in multiple human tumors and was localized on the membrane, in the cytoplasm and, surprisingly, also in the nucleus. Interestingly, β-catenin remained bound to carboxy-terminal fragments (CTFs) of CDH11, the products of CDH11 cleavage, and co-localized with CTFs in the nucleus in the majority of breast cancer samples. Binding of β-catenin to CTFs preserved β-catenin activity, whereas inhibiting CDH11 cleavage led to β-catenin phosphorylation and diminished Wnt signaling, similar to CDH11 knockout. Our data elucidate a previously unknown role of CDH11, which serves to stabilize β-catenin in the cytoplasm and facilitates its translocation to the nucleus, resulting in activation of Wnt signaling, with subsequent increased proliferation, migration and invasion potential.


TP53 Status as a Determinant of Pro- vs Anti-Tumorigenic Effects of Estrogen Receptor-Beta in Breast Cancer.

  • Utpal K Mukhopadhyay‎ et al.
  • Journal of the National Cancer Institute‎
  • 2019‎

Anti-tumorigenic vs pro-tumorigenic roles of estrogen receptor-beta (ESR2) in breast cancer remain unsettled. We investigated the potential of TP53 status to be a determinant of the bi-faceted role of ESR2 and associated therapeutic implications for triple negative breast cancer (TNBC).


Frequency of breast cancer subtypes among African American women in the AMBER consortium.

  • Emma H Allott‎ et al.
  • Breast cancer research : BCR‎
  • 2018‎

Breast cancer subtype can be classified using standard clinical markers (estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2)), supplemented with additional markers. However, automated biomarker scoring and classification schemes have not been standardized. The aim of this study was to optimize tumor classification using automated methods in order to describe subtype frequency in the African American Breast Cancer Epidemiology and Risk (AMBER) consortium.


Racial differences in CD8+ T cell infiltration in breast tumors from Black and White women.

  • Yara Abdou‎ et al.
  • Breast cancer research : BCR‎
  • 2020‎

African American/Black women with breast cancer have poorer survival than White women, and this disparity persists even after adjusting for non-biological factors. Differences in tumor immune biology have been reported between Black and White women, and the tumor immune milieu could potentially drive racial differences in breast cancer etiology and outcome.


USP1 Regulates TAZ Protein Stability Through Ubiquitin Modifications in Breast Cancer.

  • Ashley Mussell‎ et al.
  • Cancers‎
  • 2020‎

The Hippo signaling pathway is an evolutionarily conserved pathway that was initially discovered in Drosophila melanogaster and was later found to have mammalian orthologues. The key effector proteins in this pathway, YAP/TAZ, are often dysregulated in cancer, leading to a high degree of cell proliferation, migration, metastasis and cancer stem cell populations. Due to these malignant phenotypes it is important to understand the regulation of YAP/TAZ at the protein level. Using an siRNA library screen of deubiquitinating enzymes (DUBs), we identified ubiquitin specific peptidase 1 (USP1) as a novel TAZ (WWTR1) regulator. We demonstrated that USP1 interacts with TAZ and increases TAZ protein stability. Conversely, loss of function of USP1 reduces TAZ protein levels through increased poly-ubiquitination, causing a decrease in cell proliferation and migration of breast cancer cells. Moreover, we showed a strong positive correlation between USP1 and TAZ in breast cancer patients. Our findings facilitate the attainment of better understanding of the crosstalk between these pathways and may lead to potential therapeutic interventions for breast cancer patients.


Targeting EphA2 in Bladder Cancer Using a Novel Antibody-Directed Nanotherapeutic.

  • Walid Kamoun‎ et al.
  • Pharmaceutics‎
  • 2020‎

Ephrin receptor A2 (EphA2) is a member of the Ephrin/Eph receptor cell-to-cell signaling family of molecules, and it plays a key role in cell proliferation, differentiation, and migration. EphA2 is overexpressed in a broad range of cancers, and its expression is in many cases associated with poor prognosis. We recently developed a novel EphA2-targeting antibody-directed nanotherapeutic encapsulating a labile prodrug of docetaxel (EphA2-ILs-DTXp) for the treatment of EphA2-expressing malignancies. Here, we characterized the expression of EphA2 in bladder cancer using immunohistochemistry in 177 human bladder cancer samples and determined the preclinical efficacy of EphA2-ILs-DTXp in four EphA2-positive patient-derived xenograft (PDX) models of the disease, either as a monotherapy, or in combination with gemcitabine. EphA2 expression was detected in 80-100% of bladder cancer samples and correlated with shorter patient survival. EphA2 was found to be expressed in tumor cells and/or tumor-associated blood vessels in both primary and metastatic lesions with a concordance rate of approximately 90%. The EphA2-targeted antibody-directed nanotherapeutic EphA2-ILs-DTXp controlled tumor growth, mediated greater regression, and was more active than free docetaxel at equitoxic dosing in all four EphA2-positive bladder cancer PDX models. Combination of EphA2-ILs-DTXp and gemcitabine in one PDX model led to improved tumor growth control compared to monotherapies or the combination of free docetaxel and gemcitabine. These data demonstrating the prevalence of EphA2 in bladder cancers and efficacy of EphA2-ILs-DTXp in PDX models support the clinical exploration of EphA2 targeting in bladder cancer.


PRAME expression and promoter hypomethylation in epithelial ovarian cancer.

  • Wa Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

PRAME is a cancer-testis antigen (CTA) and potential immuno-therapeutic target, but has not been well-studied in epithelial ovarian cancer (EOC) or its high grade serous (HGSC) subtype. Compared to normal ovary, PRAME expression was significantly increased most EOC, regardless of stage and grade. Interestingly, PRAME mRNA expression was associated with improved survival in the HGSC subtype. The PRAME locus was a frequent target for copy number alterations (CNA) in HGSC but most changes were heterozygous losses, indicating that elevated PRAME expression is not typically due to CNA. In contrast, PRAME promoter DNA hypomethylation was very common in EOC and HGSC and correlated with increased PRAME expression. PRAME expression and promoter hypomethylation both correlated with LINE-1 hypomethylation, a biomarker of global DNA hypomethylation. Pharmacologic or genetic disruption of DNA methyltransferase (DNMT) enzymes activated PRAME expression in EOC cells. Immunohistochemistry (IHC) of PRAME in EOC revealed frequent, but low level, protein expression, and expression was confined to epithelial cells and localized to the cytoplasm. Cytoplasmic PRAME expression was positively associated with PRAME mRNA expression and negatively associated with promoter methylation, but the latter correlation was not statistically significant. PRAME protein expression did not correlate with EOC clinicopathology or survival. In summary, PRAME is frequently expressed in EOC at the mRNA and protein levels, and DNA methylation is a key mechanism regulating its expression. These data support PRAME as an immunotherapy target in EOC, and suggest treatment with DNMT inhibitors as a means to augment PRAME immunotherapy.


Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib.

  • Lei Wei‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2015‎

Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise <2% of all granular cell tumors, are associated with aggressive behavior and poor clinical outcome, and are poorly understood in terms of tumor etiology and systematic treatment. Because of its rarity, the genetic basis of malignant granular cell tumor remains unknown. We performed whole-genome sequencing of one malignant granular cell tumor with metabolic response to pazopanib. This tumor exhibited a very low mutation rate and an overall stable genome with local complex rearrangements. The mutation signature was dominated by C>T transitions, particularly when immediately preceded by a 5' G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation.


Origin of the vasculature supporting growth of primary patient tumor xenografts.

  • Bonnie L Hylander‎ et al.
  • Journal of translational medicine‎
  • 2013‎

Studies of primary patient tumor xenografts grown in immunodeficient mice have shown that these tumors histologically and genetically closely resemble the original tumors. These patient xenograft models are becoming widely used for therapeutic efficacy studies. Because many therapies are directed at tumor stromal components and because the tumor microenvironment also is known to influence the response of a tumor to therapy, it is important to understand the nature of the stroma and, in particular, the vascular supply of patient xenografts.


Extracellular sialyltransferase st6gal1 in breast tumor cell growth and invasiveness.

  • Nitai C Hait‎ et al.
  • Cancer gene therapy‎
  • 2022‎

The sialyltransferase ST6GAL1 that adds α2-6 linked sialic acids to N-glycans of cell surface and secreted glycoproteins is prominently associated with many human cancers. Tumor-native ST6GAL1 promotes tumor cell behaviors such as invasion and resistance to cell stress and chemo- and radio-treatments. Canonically, ST6GAL1 resides in the intracellular secretory apparatus and glycosylates nascent glycoproteins in biosynthetic transit. However, ST6GAL1 is also released into the extracellular milieu and extracellularly remodels cell surface and secreted glycans. The impact of this non-canonical extrinsic mechanism of ST6GAL1 on tumor cell pathobiology is not known. We hypothesize that ST6GAL1 action is the combined effect of natively expressed sialyltransferase acting cell-autonomously within the ER-Golgi complex and sialyltransferase from extracellular origins acting extrinsically to remodel cell-surface glycans. We found that shRNA knockdown of intrinsic ST6GAL1 expression resulted in decreased ST6GAL1 cargo in the exosome-like vesicles as well as decreased breast tumor cell growth and invasive behavior in 3D in vitro cultures. Extracellular ST6GAL1, present in cancer exosomes or the freely soluble recombinant sialyltransferase, compensates for insufficient intrinsic ST6GAL1 by boosting cancer cell proliferation and increasing invasiveness. Moreover, we present evidence supporting the existence novel but yet uncharacterized cofactors in the exosome-like particles that potently amplify extrinsic ST6GAL1 action, highlighting a previously unknown mechanism linking this enzyme and cancer pathobiology. Our data indicate that extracellular ST6GAL1 from remote sources can compensate for cellular ST6GAL1-mediated aggressive tumor cell proliferation and invasive behavior and has great clinical potential for extracellular ST6GAL1 as these molecules are in the extracellular space should be easily accessible targets.


Pitfalls of improperly procured adjacent non-neoplastic tissue for somatic mutation analysis using next-generation sequencing.

  • Lei Wei‎ et al.
  • BMC medical genomics‎
  • 2016‎

The rapid adoption of next-generation sequencing provides an efficient system for detecting somatic alterations in neoplasms. The detection of such alterations requires a matched non-neoplastic sample for adequate filtering of non-somatic events such as germline polymorphisms. Non-neoplastic tissue adjacent to the excised neoplasm is often used for this purpose as it is simultaneously collected and generally contains the same tissue type as the neoplasm. Following NGS analysis, we and others have frequently observed low-level somatic mutations in these non-neoplastic tissues, which may impose additional challenges to somatic mutation detection as it complicates germline variant filtering.


NY-ESO-1 cancer testis antigen demonstrates high immunogenicity in triple negative breast cancer.

  • Foluso O Ademuyiwa‎ et al.
  • PloS one‎
  • 2012‎

NY-ESO-1 cancer testis (CT) antigen is an attractive candidate for immunotherapy as a result of its high immunogenicity. The aim of this study was to explore the potential for NY-ESO-1 antigen directed immunotherapy in triple negative breast cancer (TNBC) by determining the frequency of expression by immunohistochemistry (IHC) and the degree of inherent immunogenicity to NY-ESO-1.


Sonodynamic therapy in combination with photodynamic therapy shows enhanced long-term cure of brain tumor.

  • Ballav M Borah‎ et al.
  • Scientific reports‎
  • 2020‎

This article presents the construction of a multimodality platform that can be used for efficient destruction of brain tumor by a combination of photodynamic and sonodynamic therapy. For in vivo studies, U87 patient-derived xenograft tumors were implanted subcutaneously in SCID mice. For the first time, it has been shown that the cell-death mechanism by both treatment modalities follows two different pathways. For example, exposing the U87 cells after 24 h incubation with HPPH [3-(1'-hexyloxy)ethyl-3-devinyl-pyropheophorbide-a) by ultrasound participate in an electron-transfer process with the surrounding biological substrates to form radicals and radical ions (Type I reaction); whereas in photodynamic therapy, the tumor destruction is mainly caused by highly reactive singlet oxygen (Type II reaction). The combination of photodynamic therapy and sonodynamic therapy both in vitro and in vivo have shown an improved cell kill/tumor response, that could be attributed to an additive and/or synergetic effect(s). Our results also indicate that the delivery of the HPPH to tumors can further be enhanced by using cationic polyacrylamide nanoparticles as a delivery vehicle. Exposing the nano-formulation with ultrasound also triggered the release of photosensitizer. The combination of photodynamic therapy and sonodynamic therapy strongly affects tumor vasculature as determined by dynamic contrast enhanced imaging using HSA-Gd(III)DTPA.


GEN-1 in Combination with Neoadjuvant Chemotherapy for Patients with Advanced Epithelial Ovarian Cancer: A Phase I Dose-escalation Study.

  • Premal H Thaker‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2021‎

GEN-1 (phIL-12-005/PPC), an IL12 plasmid formulated with polyethyleneglycol-polyethyleneimine cholesterol lipopolymer, has preclinical activity when combined with platinum-taxane intravenous chemotherapy and administered intraperitoneally in epithelial ovarian cancer (EOC) models. OVATION I was a multicenter, nonrandomized, open-label phase IB trial to evaluate the safety, preliminary antitumor activity, and immunologic response to GEN-1 in combination with neoadjuvant chemotherapy (NACT) carboplatin-paclitaxel in patients with advanced EOC.


Evaluation of the serotonin pathway as a biomarker in cholangiocarcinoma.

  • Christos Fountzilas‎ et al.
  • Journal of gastrointestinal oncology‎
  • 2023‎

Cholangiocarcinomas (CCAs) are rare and aggressive malignant tumors of the biliary tract. Serotonin (5HT) has tumor-promoting effects in CCA while inhibition of 5HT synthesis can decrease tumor growth.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: