Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson's disease.

  • Eva Hedlund‎ et al.
  • Stem cells (Dayton, Ohio)‎
  • 2008‎

Both fetal ventral mesencephalic (VM) and embryonic stem (ES) cell-derived dopamine neurons have been used successfully to correct behavioral responses in animal models of Parkinson's disease. However, grafts derived from fetal VM cells or from ES cells contain multiple cell types, and the majority of these cells are not dopamine neurons. Isolation of ES cell-derived dopamine neurons and subsequent transplantation would both elucidate the capacity of these neurons to provide functional input and also further explore an efficient and safer use of ES cells for the treatment of Parkinson's disease. Toward this goal, we used a Pitx3-enhanced green fluorescent protein (Pitx3-eGFP) knock-in mouse blastocyst-derived embryonic stem (mES) cell line and fluorescence-activated cell sorting (FACS) to select and purify midbrain dopamine neurons. Initially, the dopaminergic marker profile of intact Pitx3-eGFP mES cultures was evaluated after differentiation in vitro. eGFP expression overlapped closely with that of Pitx3, Nurr1, Engrailed-1, Lmx1a, tyrosine hydroxylase (TH), l-aromatic amino acid decarboxylase (AADC), and vesicular monoamine transporter 2 (VMAT2), demonstrating that these cells were of a midbrain dopamine neuron character. Furthermore, postmitotic Pitx3-eGFP(+) dopamine neurons, which constituted 2%-5% of all live cells in the culture after dissociation, could be highly enriched to >90% purity by FACS, and these isolated neurons were viable, extended neurites, and maintained a dopaminergic profile in vitro. Transplantation to 6-hydroxydopamine-lesioned rats showed that an enriched dopaminergic population could survive and restore both amphetamine- and apomorphine-induced functions, and the grafts contained large numbers of midbrain dopamine neurons, which innervated the host striatum. Disclosure of potential conflicts of interest is found at the end of this article.


Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection.

  • Eva Hedlund‎ et al.
  • Brain : a journal of neurology‎
  • 2010‎

Different somatic motor neuron subpopulations show a differential vulnerability to degeneration in diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and spinobulbar muscular atrophy. Studies in mutant superoxide dismutase 1 over-expressing amyotrophic lateral sclerosis model mice indicate that initiation of disease is intrinsic to motor neurons, while progression is promoted by astrocytes and microglia. Therefore, analysis of the normal transcriptional profile of motor neurons displaying differential vulnerability to degeneration in motor neuron disease could give important clues to the mechanisms of relative vulnerability. Global gene expression profiling of motor neurons isolated by laser capture microdissection from three anatomical nuclei of the normal rat, oculomotor/trochlear (cranial nerve 3/4), hypoglossal (cranial nerve 12) and lateral motor column of the cervical spinal cord, displaying differential vulnerability to degeneration in motor neuron disorders, identified enriched transcripts for each neuronal subpopulation. There were striking differences in the regulation of genes involved in endoplasmatic reticulum and mitochondrial function, ubiquitination, apoptosis regulation, nitrogen metabolism, calcium regulation, transport, growth and RNA processing; cellular pathways that have been implicated in motor neuron diseases. Confirmation of genes of immediate biological interest identified differential localization of insulin-like growth factor II, guanine deaminase, peripherin, early growth response 1, soluble guanylate cyclase 1A3 and placental growth factor protein. Furthermore, the cranial nerve 3/4-restricted genes insulin-like growth factor II and guanine deaminase protected spinal motor neurons from glutamate-induced toxicity (P < 0.001, ANOVA), indicating that our approach can identify factors that protect or make neurons more susceptible to degeneration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: