Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 56 papers

Toll pathway modulates TNF-induced JNK-dependent cell death in Drosophila.

  • Chenxi Wu‎ et al.
  • Open biology‎
  • 2015‎

Signalling networks that control the life or death of a cell are of central interest in modern biology. While the defined roles of the c-Jun N-terminal kinase (JNK) pathway in regulating cell death have been well-established, additional factors that modulate JNK-mediated cell death have yet to be fully elucidated. To identify novel regulators of JNK-dependent cell death, we performed a dominant-modifier screen in Drosophila and found that the Toll pathway participates in JNK-mediated cell death. Loss of Toll signalling suppresses ectopically and physiologically activated JNK signalling-induced cell death. Our epistasis analysis suggests that the Toll pathway acts as a downstream modulator for JNK-dependent cell death. In addition, gain of JNK signalling results in Toll pathway activation, revealed by stimulated transcription of Drosomycin (Drs) and increased cytoplasm-to-nucleus translocation of Dorsal. Furthermore, the Spätzle (Spz) family ligands for the Toll receptor are transcriptionally upregulated by activated JNK signalling in a non-cell-autonomous manner, providing a molecular mechanism for JNK-induced Toll pathway activation. Finally, gain of Toll signalling exacerbates JNK-mediated cell death and promotes cell death independent of caspases. Thus, we have identified another important function for the evolutionarily conserved Toll pathway, in addition to its well-studied roles in embryonic dorso-ventral patterning and innate immunity.


Lactobacillus spp. create a protective micro-ecological environment through regulating the core fucosylation of vaginal epithelial cells against cervical cancer.

  • Qingjie Fan‎ et al.
  • Cell death & disease‎
  • 2021‎

Vaginal dysbiosis often occurs in patients with cervical cancer. The fucosylation of mucosal epithelial cells is closely related to microbial colonization, and play an important role in protecting the vaginal mucosal epithelial cells. However, no reports on the relationship between vaginal dysbiosis and abnormal mucosal epithelial cell fucosylation, and their roles in the occurrence and development of cervical cancer are unavailable. Here we report that core fucosylation levels were significantly lower in the serum, exfoliated cervical cells and tumor tissue of cervical cancer patients. Core fucosyltransferase gene (Fut8) knockout promoted the proliferation and migration of cervical cancer cells. In patients with cervical cancer, the vaginal dysbiosis, and the abundance of Lactobacillus, especially L. iners, was significantly reduced. Meanwhile, the abundance of L.iners was positively correlated with core fucosylation levels. The L. iners metabolite lactate can activate the Wnt pathway through the lactate-Gpr81 complex, which increases the level of core fucosylation in epidermal cells, inhibiting the proliferation and migration of cervical cancer cells, and have application prospects in regulating the vaginal microecology and preventing cervical cancer.


Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation.

  • Guorong Wang‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2022‎

A sensitive and specific imaging method to detect metastatic cancer cells in lymph nodes to detect the early-stage breast cancer is still a challenge. The purpose of this study was to investigate a novel breast cancer-targeting and tumour microenvironment ATP-responsive superparamagnetic iron oxide nanoparticles (SPIOs) imaging probe (abbreviated as SPIOs@A-T) that was developed to detect lymph node metastasis through fluorescence molecular imaging (FMI) and magnetic particle imaging (MPI).


Alterations of milk oligosaccharides in mothers with gestational diabetes mellitus impede colonization of beneficial bacteria and development of RORγt+ Treg cell-mediated immune tolerance in neonates.

  • Xinke Li‎ et al.
  • Gut microbes‎
  • 2023‎

Gestational diabetes mellitus (GDM) is an increasing public health concern that significantly increases the risk of early childhood allergic diseases. Altered maternal milk glycobiome may strongly affect gut microbiota and enteric-specific Treg cell-mediated development of immune tolerance in GDM infants. In this study, we found that, compared with healthy Chinese mothers, mothers with GDM had significantly lower levels of total and specific human milk oligosaccharides (HMOs) in their colostrum that subsequently increased with extension of lactation. This alteration in HMO profiles significantly delayed colonization of Lactobacillus and Bifidobacterium spp. in their breast-fed infants, resulting in a distinct gut microbial structure and metabolome. Further experiments in GDM mouse models indicated that decreased contents of milk oligosaccharides, mainly 3'-sialyllactose (3'-SL), in GDM maternal mice reduced colonization of bacteria, such as L. reuteri and L. johnsonii, in the neonatal gut, which impeded development of RORγt+ regulatory T (Treg) cell-mediated immune tolerance. Treatment of GDM neonates with 3'-SL, Lactobacillus reuteri (L. reuteri) and L. johnsonii promoted the proliferation of enteric Treg cells and expression of transcription factor RORγt, which may have contributed to compromising ovalbumin (OVA)-induced allergic responses. In vitro experiments showed that 3'-SL, metabolites of L. johnsonii, and lysates of L. reuteri stimulated differentiation of mouse RORγt+ Treg cells through multiple regulatory effects on Toll-like receptor, MAPK, p53, and NOD-like receptor signaling pathways. This study provides new ideas for the development of gut microbiota and immune tolerance in GDM newborns.


Lic regulates JNK-mediated cell death in Drosophila.

  • Yihao Sun‎ et al.
  • Cell proliferation‎
  • 2019‎

The evolutionary conserved JNK pathway plays crucial role in cell death, yet factors that modulate this signalling have not been fully disclosed. In this study, we aim to identify additional factors that regulate JNK signalling in cell death, and characterize the underlying mechanisms.


Principles of Inter-Amino-Acid Recognition Revealed by Binding Energies between Homogeneous Oligopeptides.

  • Huiwen Du‎ et al.
  • ACS central science‎
  • 2019‎

We have determined the interaction strengths of the common naturally occurring amino acids using a complete binding affinity matrix of 20 × 20 pairs of homo-octapeptides consisting of the 20 common amino acids between stationary and mobile states. We used a bead-based fluorescence assay for these measurements. The results provide a basis for analyzing specificity, polymorphisms, and selectivity of inter-amino-acid interactions. Comparative analyses of the binding energies, i.e., the free energies of association (ΔG A), reveal contributions assignable to both main-chain-related and side-chain-related interactions originating from the chemical structures of these 20 common amino acids. Side-chain-side-chain and side-chain-main-chain interactions are found to be pronounced in an identified set of amino acid pairs that determine the basis of inter-amino-acid recognition.


The roles of Qishen granules recipes, Qingre Jiedu, Wenyang Yiqi and Huo Xue, in the treatment of heart failure.

  • Sheng Gao‎ et al.
  • Journal of ethnopharmacology‎
  • 2020‎

Recipes (Qingre Jiedu (QJ), Wenyang Yiqi (WYYQ) and Huo Xue (HX)) in Qishen granules (QSG) are believed to synergistically exert cardio-protective effects. However, the underlying pattern of each decomposed recipe in QSG and their synergistic effects in the treatment of heart failure (HF) are not clear.


Efficacy of Thymosin Alpha 1 in the Treatment of COVID-19: A Multicenter Cohort Study.

  • Jiao Liu‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Thymosin alpha 1 (Tα1) is widely used to treat patients with COVID-19 in China; however, its efficacy remains unclear. This study aimed to explore the efficacy of Tα1 as a COVID-19 therapy.


Risk factors for secondary hemophagocytic lymphohistiocytosis in severe coronavirus disease 2019 adult patients.

  • Mei Meng‎ et al.
  • BMC infectious diseases‎
  • 2021‎

Secondary hemophagocytic lymphohistiocytosis (sHLH) is a life-threatening hyperinflammatory event and a fatal complication of viral infections. Whether sHLH may also be observed in patients with a cytokine storm induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still uncertain. We aimed to determine the incidence of sHLH in severe COVID-19 patients and evaluate the underlying risk factors.


APLP2 Modulates JNK-Dependent Cell Migration in Drosophila.

  • Xingjun Wang‎ et al.
  • BioMed research international‎
  • 2018‎

Amyloid precursor-like protein 2 (APLP2) belongs to the APP family and is widely expressed in human cells. Though previous studies have suggested a role of APLP2 in cancer progression, the exact role of APLP2 in cell migration remains elusive. Here in this report, we show that ectopic expression of APLP2 in Drosophila induces cell migration which is mediated by JNK signaling, as loss of JNK suppresses while gain of JNK enhances such phenotype. APLP2 is able to activate JNK signaling by phosphorylation of JNK, which triggers the expression of matrix metalloproteinase MMP1 required for basement membranes degradation to promote cell migration. The data presented here unraveled an in vivo role of APLP2 in JNK-mediated cell migration.


Schaftoside inhibits 3CLpro and PLpro of SARS-CoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19.

  • Yang Yi‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2022‎

It is an urgent demand worldwide to control the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro) are key targets to discover SARS-CoV-2 inhibitors. After screening 12 Chinese herbal medicines and 125 compounds from licorice, we found that a popular natural product schaftoside inhibited 3CLpro and PLpro with IC50 values of 1.73 ± 0.22 and 3.91 ± 0.19 μmol/L, respectively, and inhibited SARS-CoV-2 virus in Vero E6 cells with EC50 of 11.83 ± 3.23 μmol/L. Hydrogen-deuterium exchange mass spectrometry analysis, quantum mechanics/molecular mechanics calculations, together with site-directed mutagenesis indicated the antiviral activities of schaftoside were related with non-covalent interactions with H41, G143 and R188 of 3CLpro, and K157, E167 and A246 of PLpro. Moreover, proteomics analysis and cytokine assay revealed that schaftoside also regulated immune response and inflammation of the host cells. The anti-inflammatory activities of schaftoside were confirmed on lipopolysaccharide-induced acute lung injury mice. Schaftoside showed good safety and pharmacokinetic property, and could be a promising drug candidate for the prevention and treatment of COVID-19.


dGLYAT modulates Gadd45-mediated JNK activation and cell invasion.

  • Meng Xu‎ et al.
  • Cell division‎
  • 2022‎

Cell invasion is a crucial step of tumor metastasis, finding new regulators of which offers potential drug targets for cancer therapy. Aberrant GLYAT expression is associated with human cancers, yet its role in cancer remains unknown. This study aims to understand the function and mechanism of Drosophila GLYAT in cell invasion.


Slik maintains tissue homeostasis by preventing JNK-mediated apoptosis.

  • Chenglin Li‎ et al.
  • Cell division‎
  • 2023‎

The c-Jun N-terminal kinase (JNK) pathway is an evolutionarily conserved regulator of cell death, which is essential for coordinating tissue homeostasis. In this study, we have characterized the Drosophila Ste20-like kinase Slik as a novel modulator of JNK pathway-mediated apoptotic cell death.


A co-assembly platform engaging macrophage scavenger receptor A for lysosome-targeting protein degradation.

  • Qian Wang‎ et al.
  • Nature communications‎
  • 2024‎

Targeted degradation of proteins has emerged as a powerful method for modulating protein homeostasis. Identification of suitable degraders is essential for achieving effective protein degradation. Here, we present a non-covalent degrader construction strategy, based on a modular supramolecular co-assembly system consisting of two self-assembling peptide ligands that bind cell membrane receptors and the protein of interest simultaneously, resulting in targeted protein degradation. The developed lysosome-targeting co-assemblies (LYTACAs) can induce lysosomal degradation of extracellular protein IL-17A and membrane protein PD-L1 in several scavenger receptor A-expressing cell lines. The IL-17A-degrading co-assembly has been applied in an imiquimod-induced psoriasis mouse model, where it decreases IL-17A levels in the skin lesion and alleviates psoriasis-like inflammation. Extending to asialoglycoprotein receptor-related protein degradation, LYTACAs have demonstrated the versatility and potential in streamlining degraders for extracellular and membrane proteins.


Physiological effects of L-theanine on Drosophila melanogaster.

  • Hui Yang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2013‎

Green tea has been consumed as the most popular drink in East Asia for centuries, and is believed to have a wide range of health benefits. L-Theanine, the major component of the free amino acids in green tea, has been reported to display neuronal protection and tumor inhibition in vitro, but its physiological effects on animal development and behavior remain elusive. In this report, we used Drosophila melanogaster, the fruit fly, as a model organism to investigate the physiological effects of L-theanine. Flies were fed with three different concentrations of theanine as a dietary supplement after eclosion, and were examined for a variety of physiological parameters at different time points. We found theanine treatment results in significantly increased locomotion and courtship ability, and decreased resistance against wet and dry starvation in males, but not in females. Furthermore, theanine application diminished UV tolerance in females, but not in males. However, we did not perceive distinguishable effect of theanine on animal development, life span, weight, and tolerance of heat and anoxia. This work represents the first comprehensive physiological investigation of L-theanine at the whole animal level, and shall shed light on the mechanistic study of theanine in the future.


Pelle Modulates dFoxO-Mediated Cell Death in Drosophila.

  • Chenxi Wu‎ et al.
  • PLoS genetics‎
  • 2015‎

Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis.


CtBP modulates Snail-mediated tumor invasion in Drosophila.

  • Chenxi Wu‎ et al.
  • Cell death discovery‎
  • 2021‎

Cancer is one of the most fatal diseases that threaten human health, whereas more than 90% mortality of cancer patients is caused by tumor metastasis, rather than the growth of primary tumors. Thus, how to effectively control or even reverse the migration of tumor cells is of great significance for cancer therapy. CtBP, a transcriptional cofactor displaying high expression in a variety of human cancers, has become one of the main targets for cancer prediction, diagnosis, and treatment. The roles of CtBP in promoting tumorigenesis have been well studied in vitro, mostly based on gain-of-function, while its physiological functions in tumor invasion and the underlying mechanism remain largely elusive. Snail (Sna) is a well-known transcription factor involved in epithelial-to-mesenchymal transition (EMT) and tumor invasion, yet the mechanism that regulates Sna activity has not been fully understood. Using Drosophila as a model organism, we found that depletion of CtBP or snail (sna) suppressed RasV12/lgl-/--triggered tumor growth and invasion, and disrupted cell polarity-induced invasive cell migration. In addition, loss of CtBP inhibits RasV12/Sna-induced tumor invasion and Sna-mediated invasive cell migration. Furthermore, both CtBP and Sna are physiologically required for developmental cell migration during thorax closure. Finally, Sna activates the JNK signaling and promotes JNK-dependent cell invasion. Given that CtBP physically interacts with Sna, our data suggest that CtBP and Sna may form a transcriptional complex that regulates JNK-dependent tumor invasion and cell migration in vivo.


Snail regulates Hippo signalling-mediated cell proliferation and tissue growth in Drosophila.

  • Xiang Ding‎ et al.
  • Open biology‎
  • 2022‎

Snail (Sna) plays a pivotal role in epithelia-mesenchymal transition and cancer metastasis, yet its functions in normal tissue development remain elusive. Here, using Drosophila as a model organism, we identified Sna as an essential regulator of Hippo signalling-mediated cell proliferation and tissue growth. First, Sna is necessary and sufficient for impaired Hippo signalling-induced cell proliferation and tissue overgrowth. Second, Sna is necessary and sufficient for the expression of Hippo pathway target genes. Third, genetic epistasis data indicate Sna acts downstream of Yki in the Hippo signalling. Finally, Sna is physiologically required for tissue growth in normal development. Mechanistically, Yki activates the transcription of sna, whose protein product binds to Scalloped (Sd) and promotes Sd-dependent cell proliferation. Thus, this study uncovered a previously unknown physiological function of Sna in normal tissue development and revealed the underlying mechanism by which Sna modulates Hippo signalling-mediated cell proliferation and tissue growth.


A coherent FOXO3-SNAI2 feed-forward loop in autophagy.

  • Xiaowei Guo‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

SignificanceUnderstanding autophagy regulation is instrumental in developing therapeutic interventions for autophagy-associated disease. Here, we identified SNAI2 as a regulator of autophagy from a genome-wide screen in HeLa cells. Upon energy stress, SNAI2 is transcriptionally activated by FOXO3 and interacts with FOXO3 to form a feed-forward regulatory loop to reinforce the expression of autophagy genes. Of note, SNAI2-increased FOXO3-DNA binding abrogates CRM1-dependent FOXO3 nuclear export, illuminating a pivotal role of DNA in the nuclear retention of nucleocytoplasmic shuttling proteins. Moreover, a dFoxO-Snail feed-forward loop regulates both autophagy and cell size in Drosophila, suggesting this evolutionarily conserved regulatory loop is engaged in more physiological activities.


Biliverdin Reductase A Protects Lens Epithelial Cells against Oxidative Damage and Cellular Senescence in Age-Related Cataract.

  • Yang Huang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Age-related cataract (ARC) is the common cause of blindness globally. Reactive oxygen species (ROS), one of the greatest contributors to aging process, leads to oxidative damage and senescence of lens epithelial cells (LECs), which are involved in the pathogenesis of ARC. Biliverdin reductase A (BVRA) has ROS-scavenging ability by converting biliverdin (BV) into bilirubin (BR). However, little is known about the protective effect of BVRA against ARC. In the present study, we measured the expression level of BVRA and BR generation in human samples. Then, the antioxidative property of BVRA was compared between the young and senescent LECs upon stress condition. In addition, we evaluated the effect of BVRA on attenuating H2O2-induced premature senescence in LECs. The results showed that the mRNA expression level of BVRA and BR concentration were decreased in both LECs and lens cortex of age-related nuclear cataract. Using the RNA interference technique, we found that BVRA defends LECs against oxidative stress via (i) restoring mitochondrial dysfunction in a BR-dependent manner, (ii) inducing heme oxygenase-1 (HO-1) expression directly, and (iii) promoting phosphorylation of ERK1/2 and nuclear delivery of nuclear factor erythroid 2-related factor 2 (Nrf2). Intriguingly, the antioxidative effect of BVRA was diminished along with the reduced BR concentration and repressed nuclear translocation of BVRA and Nrf2 in senescent LECs, which would be resulted from the decreased BVRA activity and impaired nucleocytoplasmic trafficking. Eventually, we confirmed that BVRA accelerates the G1 phase transition and prevents against H2O2-induced premature senescence in LECs. In summary, BVRA protects LECs against oxidative stress and cellular senescence in ARC by converting BV into BR, inducing HO-1 expression, and activating the ERK/Nrf2 pathway. This trial is registered with ChiCTR2000036059.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: