Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Kaemperfol alleviates pyroptosis and microglia-mediated neuroinflammation in Parkinson's disease via inhibiting p38MAPK/NF-κB signaling pathway.

  • Meiyun Cai‎ et al.
  • Neurochemistry international‎
  • 2022‎

The study aims to investigate whether kaemperfol (KAE) inhibits microglia pyroptosis and subsequent neuroinflammatory response to exert neuroprotective effects, along with the underlying mechanisms. The results showed KAE could ameliorate the behavioral deficits of Parkinson's disease (PD) rats, inhibit the activation of microglia and astrocytes, reduce the loss of TH-positive neurons, down-regulate levels of pyroptosis-related NOD-like receptor family pyrin domain containing 3 (NLRP3), GasderminD-N Term (GSDMD-NT), caspase1, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), interleukin (IL)-1β, and IL-18, and decrease the levels of inflammatory molecules (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)) and p38 mitogen-activated protein kinase/nuclear factor-kappaB (p38MAPK/NF-κB) signaling pathway molecules (p38MAPK, p-p38MAPK, NF-κB, and p-NF-κB) in the substantia nigra of PD rats. Further in vitro study indicated that KAE reversed the activation of BV2 cells and down-regulated the expressions of pyrolytic proteins, inflammatory mediators and key molecules in p38MAPK/NF-κB signaling pathway. Collectively, KAE inhibits the microglia pyroptosis and subsequent neuroinflammatory response to exert neuroprotective effects on 6-hydroxydopamine (6-OHDA)-induced PD rats and lipopolysaccharide (LPS)-induced BV2 inflammatory cells through inhibiting p38MAPK/NF-κB signaling pathway.


The lentiviral-mediated Nurr1 genetic engineering mesenchymal stem cells protect dopaminergic neurons in a rat model of Parkinson's disease.

  • Xiaoxiao Wang‎ et al.
  • American journal of translational research‎
  • 2018‎

Nuclear receptor-related factor 1 (Nurr1) has a crucial role in the development and maturation of mesencephalic dopamine (DA) neurons and also plays a protective role in maintenance of DA neurons by inhibiting the activation of microglia and astrocyte. Moreover, the mutations in Nurr1 gene are associated with familial Parkinson's disease (PD), suggested that Nurr1 modulation is a potential therapeutic target for PD. This study examines the therapeutic effects of transplantation of Nurr1 gene-modified bone marrow mesenchymal stem cells (MSCs) on 6-hydroxydopamine (6-OHDA)-induced PD rat models. MSCs were transduced with lentivirus expressing Nurr1 gene and then intrastriatally transplanted into PD rats. Our results showed that Nurr1 gene-modified MSCs overexpress and secrete Nurr1 protein in vitro and also survive and migrate in the brain. Four weeks after transplantation Nurr1 gene-modified MSCs dramatically ameliorated the abnormal behavior of PD rats and increased the numbers of tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) and TH-positive fibers in the striatum, inhibited the activation of glial cells, and reduced the expression of inflammatory factors in the SN. Taken together, these findings suggest that intrastriatal transplantation of lentiviral vector mediated Nurr1 gene-modified MSCs has notable therapeutic effect for PD rats.


An effective inducer of dopaminergic neuron-like differentiation.

  • Wenyu Fu‎ et al.
  • Neural regeneration research‎
  • 2013‎

Rat bone marrow-derived mesenchymal stem cells were cultured and passaged in vitro. After induction with basic fibroblast growth factor for 24 hours, passage 3 bone marrow-derived mesenchymal stem cells were additionally induced into dopaminergic neurons using three different combinations with basic fibroblast growth factor as follows: 20% Xiangdan injection; all-trans retinoic acid + glial-derived neurotrophic factor; or sonic hedgehog + fibroblast growth factor 8. Results suggest that the bone marrow-derived mesenchymal stem cells showed typical neuronal morphological characteristics after induction. In particular, after treatment with sonic hedgehog + fibroblast growth factor 8, the expressions of nestin, neuron-specific enolase, microtubuleassociated protein 2, tyrosine hydroxylase and vesicular monoamine transporter-2 in cells were significantly increased. Moreover, the levels of catecholamines in the culture supernatant were significantly increased. These findings indicate that Xiangdan injection, all-trans retinoic acid + glial-derived neurotrophic factor, and sonic hedgehog + fibroblast growth factor 8 can all induce dopaminergic neuronal differentiation from bone marrow-derived mesenchymal stem cells. In particular, the efficiency of sonic hedgehog + fibroblast growth factor 8 was highest.


Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells.

  • Xiaoxuan Chen‎ et al.
  • Scientific reports‎
  • 2016‎

Here we show that A-kinase anchoring protein 95 (AKAP95) and connexin 43 (Cx43) dynamically interact during cell cycle progression of lung cancer A549 cells. Interaction between AKAP95 and Cx43 at different cell cycle phases was examined by tandem mass spectrometry(MS/MS), confocal immunofluorescence microscopy, Western blot, and co-immunoprecipitation(Co-IP). Over the course of a complete cell cycle, interaction between AKAP95 and Cx43 occurred in two stages: binding stage from late G1 to metaphase, and separating stage from anaphase to late G1. The binding stage was further subdivided into complex binding to DNA in interphase and complex separating from DNA in metaphase. In late G1, Cx43 translocated to the nucleus via AKAP95; in anaphase, Cx43 separated from AKAP95 and aggregated between two daughter nuclei. In telophase, Cx43 aggregated at the membrane of the cleavage furrow. After mitosis, Cx43 was absent from the furrow membrane and was located in the cytoplasm. Binding between AKAP95 and Cx43 was reduced by N-(2-[P-Bromocinnamylamino]-ethyl)-5-isoquinolinesulfonmide (H89) treatment and enhanced by Forskolin. dynamic interaction between AKAP95 and Cx43 varies with cell cycle progression to regulate multiple biological processes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: