Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 53 papers

Suppression of cytochrome p450 reductase enhances long-term hematopoietic stem cell repopulation efficiency in mice.

  • Yan Zhang‎ et al.
  • PloS one‎
  • 2013‎

Bone marrow microenvironment (niche) plays essential roles in the fate of hematopoietic stem cells (HSCs). Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR) is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP), and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown.


Discovery of novel INK4C small-molecule inhibitors to promote human and murine hematopoietic stem cell ex vivo expansion.

  • Xiang-Qun Xie‎ et al.
  • Scientific reports‎
  • 2015‎

Hematopoietic stem cells (HSCs) have emerged as promising therapeutic cell sources for high-risk hematological malignancies and immune disorders. However, their clinical use is limited by the inability to expand these cells ex vivo. Therefore, there is an urgent need to identify specific targets and effective probes that can expand HSCs. Here we report a novel class of INK4C (p18(INK4C) or p18) small molecule inhibitors (p18SMIs), which were initially found by in silico 3D screening. We identified a lead p18 inhibitor, XIE18-6, confirmed its p18-targeting specificity and bioactivity of promoting HSCs expansion, and then performed structure-activity relationship (SAR) studies by synthesizing a series of analogs of XIE18-6. Among these, compound 40 showed the most potent bioactivity in HSCs expansion (ED50 = 5.21 nM). We confirmed that compound 40 promoted expansion of both murine and human HSCs, and also confirmed its p18-targeting specificity. Notably, compound 40 did not show significant cytotoxicity toward 32D cells or HSCs, nor did it augment leukemia cell proliferation. Taken together, our newly discovered p18SMIs represent novel chemical agents for murine and human HSCs ex vivo expansion and also can be used as valuable chemical probes for further HSC biology research towards promising utility for therapeutic purposes.


Transcriptome analysis reveals a ribosome constituents disorder involved in the RPL5 downregulated zebrafish model of Diamond-Blackfan anemia.

  • Yang Wan‎ et al.
  • BMC medical genomics‎
  • 2016‎

Diamond-Blackfan anemia (DBA) was the first ribosomopathy associated with mutations in ribosome protein (RP) genes. The clinical phenotypes of DBA include failure of erythropoiesis, congenital anomalies and cancer predisposition. Mutations in RPL5 are reported in approximately 9 ~ 21 % of DBA patients, which represents the most common pathological condition related to a large-subunit ribosomal protein. However, it remains unclear how RPL5 downregulation results in severe phenotypes of this disease.


An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia.

  • Yuan Zhou‎ et al.
  • Haematologica‎
  • 2017‎

Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation.


Gene expression profiling by mRNA sequencing reveals dysregulation of core genes in Rictor deficient T-ALL mouse model.

  • Chunlan Hua‎ et al.
  • Leukemia research‎
  • 2019‎

T-cell acute lymphoblastic leukemia (T-ALL) is a neoplastic disorder with peak incidence in children and young adults. The mTOR complex is an important component of the PI3K/Akt/mTOR signaling cascade and holds great promise for the treatment of hematopoietic malignancies. Previous studies have shown that the depression of Rictor, one of the components of the mTOR complex, prevents myeloproliferative disorders and leukemia However, knowledge of the progression of mTOR has not greatly improved the prognosis of T-ALL. To identify potential prognostic biomarkers for T-ALL, a whole-genome expression profile of Rictior deficient T-ALL mice was performed. As a result, 1475 differentially expressed genes (DEGs) were identified. Network analysis revealed 46 genes with a high network degree and fold-change value. Kaplan-Meier analysis identified ten crucial genes which significantly associated with survival in Rictor deficient T-ALL mice. These findings provide potential therapeutic targets in leukemia and bear immediate relevance to patients with leukemia.


Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates.

  • Peng Zhang‎ et al.
  • Cell discovery‎
  • 2018‎

Somatic or de novo mutations of Additional sex combs-like 1 (ASXL1) frequently occur in patients with myeloid malignancies or Bohring-Opitz syndrome, respectively. We have reported that global loss of Asxl1 leads to the development of myeloid malignancies and impairs bone marrow stromal cell (BMSC) fates in mice. However, the impact of Asxl1 deletion in the BM niche on hematopoiesis remains unclear. Here, we showed that BMSCs derived from chronic myelomonocytic leukemia patients had reduced expression of ASXL1, which impaired the maintaining cord blood CD34+ cell colony-forming capacity with a myeloid differentiation bias. Furthermore, Asxl1 deletion in the mouse BMSCs altered hematopoietic stem and progenitor cell (HSC/HPC) pool and a preferential myeloid lineage increment. Immunoprecipitation and ChIP-seq analyses demonstrated a novel interaction of ASXL1 with the core subunits of RNA polymerase II (RNAPII) complex. Convergent analyses of RNA-seq and ChIP-seq data revealed that loss of Asxl1 deregulated RNAPII transcriptional function and altered the expression of genes critical for HSC/HPC maintenance, such as Vcam1. Altogether, our study provides a mechanistic insight into the function of ASXL1 in the niche to maintain normal hematopoiesis; and ASXL1 alteration in, at least, a subset of the niche cells induces myeloid differentiation bias, thus, contributes the progression of myeloid malignancies.


2-D08 as a SUMOylation inhibitor induced ROS accumulation mediates apoptosis of acute myeloid leukemia cells possibly through the deSUMOylation of NOX2.

  • Pan Zhou‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Acute myeloid leukemia (AML) is a heterogeneous clonal hematopoietic malignancy with poor survival and frequent relapse. Recently, a posttranslational modification of proteins with small ubiquitin-like modifiers (SUMO) has been notably implicated in a wide spectrum of diseases, especially cancers. Ubc9, as the sole E2-conjugating enzyme in SUMOylation cascade, particularly has been associated with adverse clinical outcomes. 2-D08, a small molecular agent, functions by blocking the transfer of SUMO from the Ubc9 thioester to SUMO substrates without any effects on other individual steps in this process. However, both the effects and mechanisms of 2-D08 on AML cells are still unknown. In this study, we found that 2-D08 significantly suppressed cell viability and colony formation ability. Additionally, it induced mitochondrial-mediated apoptosis with dramatic accumulation of the reactive oxygen species (ROS), which could be almost completely rescued by the ROS scavenger N-acetylcysteine (NAC). Furthermore, we confirmed that the fatal accumulation of ROS was due to its aberrant generation instead of defective scavenging. In summary, our results suggest that 2-D08, as a specific SUMOylation inhibitor, induces ROS accumulation-mediated intrinsic apoptosis of AML cells possibly through deSUMOylation of NOX2. Therefore, 2-D08 might be a promising therapeutic agent for the treatment of AML in the future.


The kinase PDK1 is critical for promoting T follicular helper cell differentiation.

  • Zhen Sun‎ et al.
  • eLife‎
  • 2021‎

The kinase PDK1 is a crucial regulator for immune cell development by connecting PI3K to downstream AKT signaling. However, the roles of PDK1 in CD4+ T cell differentiation, especially in T follicular helper (Tfh) cell, remain obscure. Here we reported PDK1 intrinsically promotes the Tfh cell differentiation and germinal center responses upon acute infection by using conditional knockout mice. PDK1 deficiency in T cells caused severe defects in both early differentiation and late maintenance of Tfh cells. The expression of key Tfh regulators was remarkably downregulated in PDK1-deficient Tfh cells, including Tcf7, Bcl6, Icos, and Cxcr5. Mechanistically, ablation of PDK1 led to impaired phosphorylation of AKT and defective activation of mTORC1, resulting in substantially reduced expression of Hif1α and p-STAT3. Meanwhile, decreased p-AKT also suppresses mTORC2-associated GSK3β activity in PDK1-deficient Tfh cells. These integrated effects contributed to the dramatical reduced expression of TCF1 and ultimately impaired the Tfh cell differentiation.


Loss of MBD2 attenuates MLL-AF9-driven leukemogenesis by suppressing the leukemic cell cycle via CDKN1C.

  • Kuangguo Zhou‎ et al.
  • Oncogenesis‎
  • 2021‎

Acute myeloid leukemia (AML) is a deadly cancer characterized by an expanded self-renewal capacity that is associated with the accumulation of immature myeloid cells. Emerging evidence shows that methyl-CpG-binding domain protein 2 (MBD2), a DNA methylation reader, often participates in the transcriptional silencing of hypermethylated genes in cancer cells. Nevertheless, the role of MBD2 in AML remains unclear. Herein, by using an MLL-AF9 murine model and a human AML cell line, we observed that loss of MBD2 could delay the initiation and progression of leukemia. MBD2 depletion significantly reduced the leukemia burden by decreasing the proportion of leukemic stem cells (LSCs) and inhibiting leukemia cell proliferation in serial transplantation experiments, thereby allowing leukemic blasts to transition to a more mature state reflecting normal myelopoiesis. Both gene expression analyses and bioinformatic studies revealed that MBD2 negatively modulated genes related to myeloid differentiation, and was necessary to sustain the MLL-AF9 oncogene-induced gene program. We further demonstrated that MBD2 could promote LSC cell cycle progression through epigenetic regulation of CDKN1C transcription probably by binding to its promoter region. Taken together, our data suggest that MBD2 promotes AML development and could be a therapeutic target for myeloid malignancies.


SHP2 Inhibitors Show Anti-Myeloma Activity and Synergize With Bortezomib in the Treatment of Multiple Myeloma.

  • Pan Zhou‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Multiple myeloma (MM) is a plasma cell malignancy that remains incurable. The protein tyrosine phosphatase SHP2 is a central node regulating RAS/mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) signaling pathway which plays a crucial role in the pathogenesis and proteasome inhibitor (PI) resistance of MM. Several preclinical studies have demonstrated that SHP2 inhibitors exerted antitumor activity in cancer-harboring diverse mutations in the RAS pathway, offering the potential for targeting myeloma. In this study, we showed that pharmacological inhibition of SHP2 activity using SHP099 and RMC-4550 efficiently inhibited the proliferation of MM cells by inducing apoptosis and cell cycle arrest. As per the mechanism, SHP2 inhibitors activated the level of cleaved caspase3, BAK, and P21 and downregulated ERK phosphorylation in MM cells. Moreover, the blockade of SHP2 exhibited anti-myeloma effect in vivo in a mouse xenograft model. In addition, SHP2 inhibitors synergized the antineoplastic effect of bortezomib in bortezomib-sensitive MM cells and showed identical efficacy in targeting bortezomib-resistant MM cells. Overall, our findings suggest that SHP2-specific inhibitors trigger anti-myeloma activity in vitro and in vivo by regulating the ERK pathway and enhancing cytotoxicity of bortezomib, providing therapeutic benefits for both bortezomib naïve and resistant MM.


Disruption of mitochondrial energy metabolism is a putative pathogenesis of Diamond-Blackfan anemia.

  • Rudan Xiao‎ et al.
  • iScience‎
  • 2024‎

Energy metabolism in the context of erythropoiesis and related diseases remains largely unexplored. Here, we developed a primary cell model by differentiating hematopoietic stem progenitor cells toward the erythroid lineage and suppressing the mitochondrial oxidative phosphorylation (OXPHOS) pathway. OXPHOS suppression led to differentiation failure of erythroid progenitors and defects in ribosome biogenesis. Ran GTPase-activating protein 1 (RanGAP1) was identified as a target of mitochondrial OXPHOS for ribosomal defects during erythropoiesis. Overexpression of RanGAP1 largely alleviated erythroid defects resulting from OXPHOS suppression. Coenzyme Q10, an activator of OXPHOS, largely rescued erythroid defects and increased RanGAP1 expression. Patients with Diamond-Blackfan anemia (DBA) exhibited OXPHOS suppression and a concomitant suppression of ribosome biogenesis. RNA-seq analysis implied that the substantial mutation (approximately 10%) in OXPHOS genes accounts for OXPHOS suppression in these patients. Conclusively, OXPHOS disruption and the associated disruptive mitochondrial energy metabolism are linked to the pathogenesis of DBA.


Transcriptome analysis of the zebrafish model of Diamond-Blackfan anemia from RPS19 deficiency via p53-dependent and -independent pathways.

  • Qiong Jia‎ et al.
  • PloS one‎
  • 2013‎

Diamond-Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome that is characterized by pure red-cell aplasia and associated physical deformities. It has been proven that defects of ribosomal proteins can lead to this disease and that RPS19 is the most frequently mutated gene in DBA patients. Previous studies suggest that p53-dependent genes and pathways play important roles in RPS19-deficient embryos. However, whether there are other vital factors linked to DBA has not been fully clarified. In this study, we compared the whole genome RNA-Seq data of zebrafish embryos injected with RPS19 morpholino (RPS19 MO), RPS19 and p53 morpholino simultaneously (RPS19+p53 MO) and control morpholino (control). We found that genes enriched in the functions of hematological systems, nervous system development and skeletal and muscular disorders had significant differential expression in RPS19 MO embryos compared with controls. Co-inhibition of p53 partially alleviates the abnormalities for RPS19-deficient embryos. However, the hematopoietic genes, which were down-regulated significantly in RPS19 MO embryos, were not completely recovered by the co-inhibition of p53. Furthermore, we identified the genome-wide p53-dependent and -independent genes and pathways. These results indicate that not only p53 family members but also other factors have important impacts on RPS19-deficient embryos. The detection of potential pathogenic genes and pathways provides us a new paradigm for future research on DBA, which is a systematic and complex hereditary disease.


Notch1-induced T cell leukemia can be potentiated by microenvironmental cues in the spleen.

  • Shihui Ma‎ et al.
  • Journal of hematology & oncology‎
  • 2014‎

Leukemia is a systemic malignancy originated from hematopoietic cells. The extracellular environment has great impacts on the survival, proliferation and dissemination of leukemia cells. The spleen is an important organ for extramedullary hematopoiesis and a common infiltration site in lymphoid malignancies. Splenomegaly, frequently observed in T cell acute lymphoblastic leukemia (T-ALL), is associated with poor prognosis. However, how the spleen microenvironment distinctly affects T-ALL cells as opposed to bone marrow (BM) microenvironment has not been addressed.


Rictor Regulates Spermatogenesis by Controlling Sertoli Cell Cytoskeletal Organization and Cell Polarity in the Mouse Testis.

  • Heling Dong‎ et al.
  • Endocrinology‎
  • 2015‎

Maintenance of cell polarity is essential for Sertoli cell and blood-testis barrier (BTB) function and spermatogenesis; however, the signaling mechanisms that regulate the integrity of the cytoskeleton and polarity of Sertoli cells are not fully understood. Here, we demonstrate that rapamycin-insensitive component of target of rapamycin (TOR) (Rictor), a core component of mechanistic TOR complex 2 (mTORC2), was expressed in the seminiferous epithelium during testicular development, and was down-regulated in a cadmium chloride-induced BTB damage model. We then conditionally deleted the Rictor gene in Sertoli cells and mutant mice exhibited azoospermia and were sterile as early as 3 months old. Further study revealed that Rictor may regulate actin organization via both mTORC2-dependent and mTORC2-independent mechanisms, in which the small GTPase, ras-related C3 botulinum toxin substrate 1, and phosphorylation of the actin filament regulatory protein, Paxillin, are involved, respectively. Loss of Rictor in Sertoli cells perturbed actin dynamics and caused microtubule disarrangement, both of which accumulatively disrupted Sertoli cell polarity and BTB integrity, accompanied by testicular developmental defects, spermiogenic arrest and excessive germ cell loss in mutant mice. Together, these findings establish the importance of Rictor/mTORC2 signaling in Sertoli cell function and spermatogenesis through the maintenance of Sertoli cell cytoskeletal dynamics, BTB integrity, and cell polarity.


Pancreatic Inflammation Redirects Acinar to β Cell Reprogramming.

  • Hannah W Clayton‎ et al.
  • Cell reports‎
  • 2016‎

Using a transgenic mouse model to express MafA, Pdx1, and Neurog3 (3TF) in a pancreatic acinar cell- and doxycycline-dependent manner, we discovered that the outcome of transcription factor-mediated acinar to β-like cellular reprogramming is dependent on both the magnitude of 3TF expression and on reprogramming-induced inflammation. Overly robust 3TF expression causes acinar cell necrosis, resulting in marked inflammation and acinar-to-ductal metaplasia. Generation of new β-like cells requires limiting reprogramming-induced inflammation, either by reducing 3TF expression or by eliminating macrophages. The new β-like cells were able to reverse streptozotocin-induced diabetes 6 days after inducing 3TF expression but failed to sustain their function after removal of the reprogramming factors.


PDK1 plays a vital role on hematopoietic stem cell function.

  • Tianyuan Hu‎ et al.
  • Scientific reports‎
  • 2017‎

3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a pivotal regulator in the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway that have been shown to play key roles in the functional development of B and T cells via activation of AGC protein kinases during hematopoiesis. However, the role of PDK1 in HSCs has not been fully defined. Here we specifically deleted the PDK1 gene in the hematopoietic system and found that PDK1-deficient HSCs exhibited impaired function and defective lineage commitment abilities. Lack of PDK1 caused HSCs to be less quiescent and to produce a higher number of phenotypic HSCs and fewer progenitors. PDK1-deficient HSCs were also unable to reconstitute the hematopoietic system. Notably, HSC function was more dependent on PDK1 than on mTORC2, which indicates that PDK1 plays a dominant role in the Akt-mediated regulation of HSC function. PDK1-deficient HSCs also exhibited reduced ROS levels, and treatment of PDK1-deficient HSCs with L-butathioninesulfoximine in vitro elevated the low ROS level and promoted colony formation. Therefore, PDK1 appears to contribute to HSC function partially via regulating ROS levels.


Colony-stimulating factor 3 receptor (CSF3R) M696T mutation does not impact on clinical outcomes of a Ph+ acute lymphoblastic leukemia patient.

  • Xin Chen‎ et al.
  • Blood science (Baltimore, Md.)‎
  • 2021‎

Colony-stimulating factor 3 receptor (CSF3R) mutations have been identified in a variety of myeloid disorders. Although CSF3R point mutations (eg, T618I) are emerging as key players in chronic neutrophilic leukemia/atypical chronic myelogenous leukemia , the significance of rarer CSF3R mutations is unknown. Here, we report a 32-year-old female who was diagnosed as Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) with the CSF3R M696T mutation and was undergone unrelated donor hematopoietic stem cell transplantation. The patient achieved complete remission with chemotherapy in combination with tyrosine kinase inhibitor (TKI) and long-term survival by unrelated donor transplantation. Meanwhile, we performed a series of experiments using murine interleukin 3 (IL-3)-dependent Ba/F3 cell line to evaluate the transforming capacity of the CSF3R M696T mutation. We confirmed the presence of a CSF3R M696T germline mutation in this patient which was inherited from her mother. The in vitro experiment results showed that the CSF3R M696T mutation contributes marginally to the tumor transformation of Ba/F3 cells, indicating that CSF3R M696T mutation was neutral in tumor transformation ability. We concluded that TKI is effective in patients with the CSF3R M696T mutation in Ph+ ALL and donors with CSF3R M696T mutation might still be selected as the candidate for transplantation.


R274X-mutated Phf6 increased the self-renewal and skewed T cell differentiation of hematopoietic stem cells.

  • Yanjie Lan‎ et al.
  • iScience‎
  • 2023‎

The PHD finger protein 6 (PHF6) mutations frequently occurred in hematopoietic malignancies. Although the R274X mutation in PHF6 (PHF6R274X) is one of the most common mutations identified in T cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML) patients, the specific role of PHF6R274X in hematopoiesis remains unexplored. Here, we engineered a knock-in mouse line with conditional expression of Phf6R274X-mutated protein in the hematopoietic system (Phf6R274X mouse). The Phf6R274X mice displayed an enlargement of hematopoietic stem cells (HSCs) compartment and increased proportion of T cells in bone marrow. More Phf6R274X T cells were in activated status than control. Moreover, Phf6R274X mutation led to enhanced self-renewal and biased T cells differentiation of HSCs as assessed by competitive transplantation assays. RNA-sequencing analysis confirmed that Phf6R274X mutation altered the expression of key genes involved in HSC self-renewal and T cell activation. Our study demonstrated that Phf6R274X plays a critical role in fine-tuning T cells and HSC homeostasis.


PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression.

  • Shengnan Yuan‎ et al.
  • Leukemia‎
  • 2022‎

T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematologic disease caused by gene mutations in T-cell progenitors. As an important epigenetic regulator, PHF6 mutations frequently coexist with JAK3 mutations in T-ALL patients. However, the role(s) of PHF6 mutations in JAK3-driven leukemia remain unclear. Here, the cooperation between JAK3 activation and PHF6 inactivation is examined in leukemia patients and in mice models. We found that the average survival time is shorter in patients with JAK/STAT and PHF6 comutation than that in other patients, suggesting a potential role of PHF6 in leukemia progression. We subsequently found that Phf6 deficiency promotes JAK3M511I-induced T-ALL progression in mice by inhibiting the Bai1-Mdm2-P53 signaling pathway, which is independent of the JAK3/STAT5 signaling pathway. Furthermore, combination therapy with a JAK3 inhibitor (tofacitinib) and a MDM2 inhibitor (idasanutlin) reduces the Phf6 KO and JAK3M511I leukemia burden in vivo. Taken together, our study suggests that combined treatment with JAK3 and MDM2 inhibitors may potentially increase the drug benefit for T-ALL patients with PHF6 and JAK3 comutation.


Loss of MBD2 affects early T cell development by inhibiting the WNT signaling pathway.

  • Ling Cheng‎ et al.
  • Experimental cell research‎
  • 2021‎

DNA methylation alters the expression of certain genes without any alteration to the DNA sequence and is a dynamic process during normal hematopoietic differentiation. As an epigenetic regulator, methyl-CpG-binding domain protein 2 (MBD2) is an important member of the MBD protein family and is acknowledged as a "reader" of DNA methylation. We used a mouse model to study the effects of MBD2 on the early development of T cells. Here, we found that MBD2 deficiency led to retardation of T cell differentiation at the DN3 stage. Meanwhile, decreased proliferative capacity and increased apoptosis were detected in Mbd2-/- DN thymocytes. Furthermore, we found the WNT pathway was significantly down-regulated in Mbd2-/- DN thymocytes: DKK1 (Dickkopf-1) expression was significantly increased, while TCF7 (transcription factor 7) and c-MYC were down-regulated. Thus, these findings established that MBD2 acted as a dominant regulator to imprint DN T cell development via the WNT pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: