Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

The WNT7b promoter is regulated by TTF-1, GATA6, and Foxa2 in lung epithelium.

  • Joel Weidenfeld‎ et al.
  • The Journal of biological chemistry‎
  • 2002‎

In this study, we find that WNT7b is the only member of the WNT family of autocrine/paracrine signaling molecules whose expression in the lung is restricted to the airway epithelium during embryonic development. To study the transcriptional mechanisms that underlie this restricted pattern of WNT7b expression, we isolated the proximal 1.0-kb mouse WNT7b promoter and mapped the transcriptional start sites. Transfection of the lung epithelial cell line MLE-15, which expresses WNT7b, shows that the 1.0-kb mouse WNT7b promoter is highly active in lung epithelial cells. This region of the WNT7b promoter contains several DNA binding sites for the important lung-restricted transcription factors TTF-1, GATA6, and Foxa2. Electrophoretic mobility shift assays showed that TTF-1, GATA6, and Foxa2 can bind to a specific subset of their consensus DNA binding sites within the WNT7b promoter. Using cotransfection assays, we demonstrate that TTF-1, GATA6, and Foxa2 can trans-activate the WNT7b promoter in NIH-3T3 cells. Truncation of GATA6 or Foxa2 binding sites reduced the ability of these transcriptional regulators to trans-activate the WNT7b promoter. Finally, the minimal 118-bp region of the mouse WNT7b promoter containing only TTF-1 binding sites was synergistically activated by TTF-1 and GATA6, and we show that TTF-1 and GATA6 physically interact in vivo. Together, these results suggest that WNT7b gene expression in the lung epithelium is regulated in a combinatorial fashion by TTF-1, GATA6, and Foxa2.


Live-cell imaging and analysis reveal cell phenotypic transition dynamics inherently missing in snapshot data.

  • Weikang Wang‎ et al.
  • Science advances‎
  • 2020‎

Recent advances in single-cell techniques catalyze an emerging field of studying how cells convert from one phenotype to another, in a step-by-step process. Two grand technical challenges, however, impede further development of the field. Fixed cell-based approaches can provide snapshots of high-dimensional expression profiles but have fundamental limits on revealing temporal information, and fluorescence-based live-cell imaging approaches provide temporal information but are technically challenging for multiplex long-term imaging. We first developed a live-cell imaging platform that tracks cellular status change through combining endogenous fluorescent labeling that minimizes perturbation to cell physiology and/or live-cell imaging of high-dimensional cell morphological and texture features. With our platform and an A549 VIM-RFP epithelial-to-mesenchymal transition (EMT) reporter cell line, live-cell trajectories reveal parallel paths of EMT missing from snapshot data due to cell-cell dynamic heterogeneity. Our results emphasize the necessity of extracting dynamical information of phenotypic transitions from multiplex live-cell imaging.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: