Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Peak trabecular bone microstructure predicts rate of estrogen-deficiency-induced bone loss in rats.

  • Yihan Li‎ et al.
  • Bone‎
  • 2021‎

Postmenopausal osteoporosis affects a large number of women worldwide. Reduced estrogen levels during menopause lead to accelerated bone remodeling, resulting in low bone mass and increased fracture risk. Both peak bone mass and the rate of bone loss are important predictors of postmenopausal osteoporosis risk. However, whether peak bone mass and/or bone microstructure directly influence the rate of bone loss following menopause remains unclear. Our study aimed to establish the relationship between peak bone mass/microstructure and the rate of bone loss in response to estrogen deficiency following ovariectomy (OVX) surgery in rats of homogeneous background by tracking the skeletal changes using in vivo micro-computed tomography (μCT) and three-dimensional (3D) image registrations. Linear regression analyses demonstrated that the peak bone microstructure, but not peak bone mass, was highly predictive of the rate of OVX-induced bone loss. In particular, the baseline trabecular thickness was found to have the highest correlation with the degree of OVX-induced bone loss and trabecular stiffness reduction. Given the same bone mass, the rats with thicker baseline trabeculae had a lower rate of trabecular microstructure and stiffness deterioration after OVX. Moreover, further evaluation to track the changes within each individual trabecula via our novel individual trabecular dynamics (ITD) analysis suggested that a trabecular network with thicker trabeculae is less likely to disconnect or perforate in response to estrogen deficiency, resulting a lower degree of bone loss. Taken together, these findings indicate that the rate of estrogen-deficiency-induced bone loss could be predicted by peak bone microstructure, most notably the trabecular thickness. Given the same bone mass, a trabecular bone phenotype with thin trabeculae may be a risk factor toward accelerated postmenopausal bone loss.


Maternal bone adaptation to mechanical loading during pregnancy, lactation, and post-weaning recovery.

  • Yihan Li‎ et al.
  • Bone‎
  • 2021‎

The maternal skeleton undergoes dramatic bone loss during pregnancy and lactation, and substantial bone recovery post-weaning. The structural adaptations of maternal bone during reproduction and lactation exert a better protection of the mechanical integrity at the critical load-bearing sites, suggesting the importance of physiological load-bearing in regulating reproduction-induced skeletal alterations. Although it is suggested that physical exercise during pregnancy and breastfeeding improves women's physical and psychological well-being, its effects on maternal bone health remain unclear. Therefore, the objective of this study was to investigate the maternal bone adaptations to external mechanical loading during pregnancy, lactation, and post-weaning recovery. By utilizing an in vivo dynamic tibial loading protocol in a rat model, we demonstrated improved maternal cortical bone structure in response to dynamic loading at tibial midshaft, regardless of reproductive status. Notably, despite the minimal loading responses detected in the trabecular bone in virgins, rat bone during lactation experienced enhanced mechano-responsiveness in both trabecular and cortical bone compartments when compared to rats at other reproductive stages or age-matched virgins. Furthermore, our study showed that the lactation-induced elevation in osteocyte peri-lacunar/canalicular remodeling (PLR) activities led to enlarged osteocyte lacunae. This may result in alterations in interstitial fluid flow-mediated mechanical stimulation on osteocytes and an elevation in solute transport through the lacunar-canalicular system (LCS) during high-frequency dynamic loading, thus enhancing mechano-responsiveness of maternal bone during lactation. Taken together, findings from this study provide important insights into the relationship between reproduction- and lactation-induced skeletal changes and external mechanical loading, emphasizing the importance of weight-bearing exercise on maternal bone health during reproduction and postpartum.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: