Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Cyclin D1 induction of Dicer governs microRNA processing and expression in breast cancer.

  • Zuoren Yu‎ et al.
  • Nature communications‎
  • 2013‎

Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates the pRB protein and promotes G1/S cell-cycle progression and oncogenesis. Dicer is a central regulator of miRNA maturation, encoding an enzyme that cleaves double-stranded RNA or stem-loop-stem RNA into 20-25 nucleotide long small RNA, governing sequence-specific gene silencing and heterochromatin methylation. The mechanism by which the cell cycle directly controls the non-coding genome is poorly understood. Here we show that cyclin D1(-/-) cells are defective in pre-miRNA processing which is restored by cyclin D1a rescue. Cyclin D1 induces Dicer expression in vitro and in vivo. Dicer is transcriptionally targeted by cyclin D1, via a cdk-independent mechanism. Cyclin D1 and Dicer expression significantly correlates in luminal A and basal-like subtypes of human breast cancer. Cyclin D1 and Dicer maintain heterochromatic histone modification (Tri-m-H3K9). Cyclin D1-mediated cellular proliferation and migration is Dicer-dependent. We conclude that cyclin D1 induction of Dicer coordinates microRNA biogenesis.


The HDAC3 enzymatic activity regulates skeletal muscle fuel metabolism.

  • Shiyang Song‎ et al.
  • Journal of molecular cell biology‎
  • 2019‎

Histone deacetylase 3 (HDAC3) is a major HDAC, whose enzymatic activity is targeted by small molecule inhibitors for treating a variety of conditions. However, its enzymatic activity is largely dispensable for its function in embryonic development and hepatic lipid metabolism. HDAC3 plays a pivotal role in regulating muscle fuel metabolism and contractile function. Here, we address whether these muscular functions of HDAC3 require its enzymatic activity. By mutating the NCoR/SMRT corepressors in a knock-in mouse model named NS-DADm, we ablated the enzymatic activity of HDAC3 without affecting its protein levels. Compared to the control mice, skeletal muscles from NS-DADm mice showed lower force generation, enhanced fatigue resistance, enhanced fatty acid oxidation, reduced glucose uptake during exercise, upregulated expression of metabolic genes involved in branched-chain amino acids catabolism, and reduced muscle mass during aging, without changes in the muscle fiber-type composition or mitochondrial protein content. These muscular phenotypes are similar to those observed in the HDAC3-depleted skeletal muscles, which demonstrates that, unlike that in the liver or embryonic development, the metabolic function of HDAC3 in skeletal muscles requires its enzymatic activity. These results suggest that drugs specifically targeting HDAC3 enzyme activity could be developed and tested to modulate muscle energy metabolism and exercise performance.


Peak trabecular bone microstructure predicts rate of estrogen-deficiency-induced bone loss in rats.

  • Yihan Li‎ et al.
  • Bone‎
  • 2021‎

Postmenopausal osteoporosis affects a large number of women worldwide. Reduced estrogen levels during menopause lead to accelerated bone remodeling, resulting in low bone mass and increased fracture risk. Both peak bone mass and the rate of bone loss are important predictors of postmenopausal osteoporosis risk. However, whether peak bone mass and/or bone microstructure directly influence the rate of bone loss following menopause remains unclear. Our study aimed to establish the relationship between peak bone mass/microstructure and the rate of bone loss in response to estrogen deficiency following ovariectomy (OVX) surgery in rats of homogeneous background by tracking the skeletal changes using in vivo micro-computed tomography (μCT) and three-dimensional (3D) image registrations. Linear regression analyses demonstrated that the peak bone microstructure, but not peak bone mass, was highly predictive of the rate of OVX-induced bone loss. In particular, the baseline trabecular thickness was found to have the highest correlation with the degree of OVX-induced bone loss and trabecular stiffness reduction. Given the same bone mass, the rats with thicker baseline trabeculae had a lower rate of trabecular microstructure and stiffness deterioration after OVX. Moreover, further evaluation to track the changes within each individual trabecula via our novel individual trabecular dynamics (ITD) analysis suggested that a trabecular network with thicker trabeculae is less likely to disconnect or perforate in response to estrogen deficiency, resulting a lower degree of bone loss. Taken together, these findings indicate that the rate of estrogen-deficiency-induced bone loss could be predicted by peak bone microstructure, most notably the trabecular thickness. Given the same bone mass, a trabecular bone phenotype with thin trabeculae may be a risk factor toward accelerated postmenopausal bone loss.


PMO-based let-7c site blocking oligonucleotide (SBO) mediated utrophin upregulation in mdx mice, a therapeutic approach for Duchenne muscular dystrophy (DMD).

  • Kasturi Sengupta‎ et al.
  • Scientific reports‎
  • 2020‎

Upregulation of utrophin, a dystrophin related protein, is considered a promising therapeutic approach for Duchenne muscular dystrophy (DMD). Utrophin expression is repressed at the post-transcriptional level by a set of miRNAs, among which let-7c is evolutionarily highly conserved. We designed PMO-based SBOs complementary to the let-7c binding site in UTRN 3'UTR, with the goal of inhibiting let-7c interaction with UTRN mRNA and thus upregulating utrophin. We used the C2C12UTRN5'luc3' reporter cell line in which the 5'- and 3'-UTRs of human UTRN sequences flank luciferase, for reporter assays and the C2C12 cell line for utrophin western blots, to independently evaluate the site blocking efficiency of a series of let-7c PMOs in vitro. Treatment of one-month old mdx mice with the most effective let-7c PMO (i.e. S56) resulted in ca. two-fold higher utrophin protein expression in skeletal muscles and the improvement in dystrophic pathophysiology in mdx mice, in vivo. In summary, we show that PMO-based let-7c SBO has potential applicability for upregulating utrophin expression as a therapeutic approach for DMD.


Genome Editing-Mediated Utrophin Upregulation in Duchenne Muscular Dystrophy Stem Cells.

  • Kasturi Sengupta‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2020‎

Utrophin upregulation is considered a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). A number of microRNAs (miRNAs) post-transcriptionally regulate utrophin expression by binding their cognate sites in the 3' UTR. Previously we have shown that miRNA: UTRN repression can be alleviated using miRNA let-7c site blocking oligonucleotides (SBOs) to achieve utrophin upregulation and functional improvement in mdx mice. Here, we used CRISPR/Cas9-mediated genome editing to delete five miRNA binding sites (miR-150, miR-296-5p, miR-133b, let-7c, miR-196b) clustered in a 500 bp inhibitory miRNA target region (IMTR) within the UTRN 3' UTR, for achieving higher expression of endogenous utrophin. Deleting the UTRN IMTR in DMD patient-derived human induced pluripotent stem cells (DMD-hiPSCs) resulted in ca. 2-fold higher levels of utrophin protein. Differentiation of the UTRN edited DMD-hiPSCs (UTRNΔIMTR) by MyoD overexpression resulted in increased sarcolemmal α-sarcoglycan staining consistent with improved dystrophin glycoprotein complex (DGC) restoration. These results demonstrate that CRISPR/Cas9-based UTRN genome editing offers a novel utrophin upregulation therapeutic strategy applicable to all DMD patients, irrespective of the dystrophin mutation status.


Persistent NF-κB activation in muscle stem cells induces proliferation-independent telomere shortening.

  • Elisia D Tichy‎ et al.
  • Cell reports‎
  • 2021‎

During the repeated cycles of damage and repair in many muscle disorders, including Duchenne muscular dystrophy (DMD), the muscle stem cell (MuSC) pool becomes less efficient at responding to and repairing damage. The underlying mechanism of such stem cell dysfunction is not fully known. Here, we demonstrate that the distinct early telomere shortening of diseased MuSCs in both mice and young DMD patients is associated with aberrant NF-κB activation. We find that prolonged NF-κB activation in MuSCs in chronic injuries leads to shortened telomeres and Ku80 dysregulation and results in severe skeletal muscle defects. Our studies provide evidence of a role for NF-κB in regulating stem-cell-specific telomere length, independently of cell replication, and could be a congruent mechanism that is applicable to additional tissues and/or diseases characterized by systemic chronic inflammation.


Maternal bone adaptation to mechanical loading during pregnancy, lactation, and post-weaning recovery.

  • Yihan Li‎ et al.
  • Bone‎
  • 2021‎

The maternal skeleton undergoes dramatic bone loss during pregnancy and lactation, and substantial bone recovery post-weaning. The structural adaptations of maternal bone during reproduction and lactation exert a better protection of the mechanical integrity at the critical load-bearing sites, suggesting the importance of physiological load-bearing in regulating reproduction-induced skeletal alterations. Although it is suggested that physical exercise during pregnancy and breastfeeding improves women's physical and psychological well-being, its effects on maternal bone health remain unclear. Therefore, the objective of this study was to investigate the maternal bone adaptations to external mechanical loading during pregnancy, lactation, and post-weaning recovery. By utilizing an in vivo dynamic tibial loading protocol in a rat model, we demonstrated improved maternal cortical bone structure in response to dynamic loading at tibial midshaft, regardless of reproductive status. Notably, despite the minimal loading responses detected in the trabecular bone in virgins, rat bone during lactation experienced enhanced mechano-responsiveness in both trabecular and cortical bone compartments when compared to rats at other reproductive stages or age-matched virgins. Furthermore, our study showed that the lactation-induced elevation in osteocyte peri-lacunar/canalicular remodeling (PLR) activities led to enlarged osteocyte lacunae. This may result in alterations in interstitial fluid flow-mediated mechanical stimulation on osteocytes and an elevation in solute transport through the lacunar-canalicular system (LCS) during high-frequency dynamic loading, thus enhancing mechano-responsiveness of maternal bone during lactation. Taken together, findings from this study provide important insights into the relationship between reproduction- and lactation-induced skeletal changes and external mechanical loading, emphasizing the importance of weight-bearing exercise on maternal bone health during reproduction and postpartum.


High-throughput identification of post-transcriptional utrophin up-regulators for Duchenne muscle dystrophy (DMD) therapy.

  • Emanuele Loro‎ et al.
  • Scientific reports‎
  • 2020‎

Upregulation of endogenous utrophin offers great promise for treating DMD, as it can functionally compensate for the lack of dystrophin caused by DMD gene mutations, without the immunogenic concerns associated with delivering dystrophin. However, post-transcriptional repression mechanisms targeting the 5' and 3' untranslated regions (UTRs) of utrophin mRNA significantly limit the magnitude of utrophin upregulation achievable by promoter activation. Using a utrophin 5'3'UTR reporter assay, we performed a high-throughput screen (HTS) for small molecules capable of relieving utrophin post-transcriptional repression. We identified 27 hits that were ranked using a using an algorithm that we designed for hit prioritization that we call Hit to Lead Prioritization Score (H2LPS). The top 10 hits were validated using an orthogonal assay for endogenous utrophin expression. Evaluation of the top scoring hit, Trichostatin A (TSA), demonstrated utrophin upregulation and functional improvement in the mdx mouse model of DMD. TSA and the other small molecules identified here represent potential starting points for DMD drug discovery efforts.


AKT controls protein synthesis and oxidative metabolism via combined mTORC1 and FOXO1 signalling to govern muscle physiology.

  • Natasha Jaiswal‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2022‎

Skeletomuscular diseases result in significant muscle loss and decreased performance, paralleled by a loss in mitochondrial and oxidative capacity. Insulin and insulin-like growth factor-1 (IGF-1) are two potent anabolic hormones that activate a host of signalling intermediates including the serine/threonine kinase AKT to influence skeletal muscle physiology. Defective AKT signalling is associated with muscle pathology, including cachexia, sarcopenia, and disuse; however, the mechanistic underpinnings remain unresolved.


Comparison of canal transportation and centering ability of manual K-files and reciprocating files in glide path preparation: a micro-computed tomography study of constricted canals.

  • Jing-Yi Liu‎ et al.
  • BMC oral health‎
  • 2021‎

Optimum Glide Path (OGP) is a new reciprocating motion aiming to perform efficient glide path preparation in constricted canals. The aim of this study was to investigate and compare manual and OGP movement in terms of canal transportation and centering ability in glide path preparation of constricted canals.


Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients.

  • Stefano Gambardella‎ et al.
  • Journal of translational medicine‎
  • 2010‎

MicroRNAs are highly conserved, noncoding RNAs involved in post-transcriptional gene silencing. They have been shown to participate in a wide range of biological processes, including myogenesis and muscle regeneration. The goal of this study is to test the hypothesis that myo-miRs (myo = muscle + miR = miRNA) expression is altered in muscle from patients affected by myotonic dystrophy type 1 (DM1), the most frequently inherited neuromuscular disease in adults. In order to gain better insights about the role of miRNAs in the DM1 pathogenesis, we have also analyzed the muscular expression of miR-103 and miR-107, which have been identified in silico as attractive candidates for binding to the DMPK mRNA.


The nuclear receptor Rev-erbα controls circadian thermogenic plasticity.

  • Zachary Gerhart-Hines‎ et al.
  • Nature‎
  • 2013‎

Circadian oscillation of body temperature is a basic, evolutionarily conserved feature of mammalian biology. In addition, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbα (also known as Nr1d1), a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare considerably better at 05:00 (Zeitgeber time 22) when Rev-erbα is barely expressed than at 17:00 (Zeitgeber time 10) when Rev-erbα is abundant. Deletion of Rev-erbα markedly improves cold tolerance at 17:00, indicating that overcoming Rev-erbα-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (Ucp1) by cold temperatures is preceded by rapid downregulation of Rev-erbα in BAT. Rev-erbα represses Ucp1 in a brown-adipose-cell-autonomous manner and BAT Ucp1 levels are high in Rev-erbα-null mice, even at thermoneutrality. Genetic loss of Rev-erbα also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbα acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands.


Activation, development, and attenuation of modeling- and remodeling-based bone formation in adult rats.

  • Wenzheng Wang‎ et al.
  • Biomaterials‎
  • 2021‎

Activation of modeling-based bone formation (MBF - bone formation without prior activation of bone resorption), has been identified as an important mechanism by which anabolic agents, such as intermittent parathyroid hormone (PTH), rapidly elicit new bone formation. Using a novel cryohistology imaging platform, coupled with sequential multicolor fluorochrome injections, we demonstrated that MBF and remodeling-based bone formation (RBF) in the adult rat tibia model have similar contributions to trabecular bone homeostasis. PTH treatment resulted in a 2.4-4.9 fold greater bone formation rate over bone surface (BFR/BS) by RBF and a 4.3-8.5 fold greater BFR/BS by MBF in male, intact female, and ovariectomized female rats. Moreover, regardless of bone formation type, once a formation site is activated by PTH, mineral deposition continues throughout the entire treatment duration. Furthermore, by tracking the sequence of multicolor fluorochrome labels, we discovered that MBF, a highly efficient but often overlooked regenerative mechanism, is activated more rapidly but attenuated faster than RBF in response to PTH. This suggests that MBF and RBF contribute differently to PTH's anabolic effect in rats: MBF has a greater contribution to the acute elevation in bone mass at the early stage of treatment while RBF contributes to the sustained treatment effect.


Effect of Interleukin-15 Receptor Alpha Ablation on the Metabolic Responses to Moderate Exercise Simulated by in vivo Isometric Muscle Contractions.

  • Emanuele Loro‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Lack of interleukin 15 receptor alpha (IL15RA) increases spontaneous activity, exercise capacity and protects from diet-induced obesity by enhancing muscle energy metabolism, suggesting a role as exercise mimetic for IL15RA antagonists. Using controlled in vivo muscle stimulation mimicking moderate exercise in normal and Il15ra-/- mice, we mapped and contrasted the metabolic pathways activated upon stimulation or deletion of IL15RA. Stimulation caused the differential regulation of 123 out of the 321 detected metabolites (FDR ≤ 0.05 and fold change ≥ ±1.5). The main energy pathways activated were fatty acid oxidation, nucleotide metabolism, and anaplerotic reactions. Notably, resting Il15ra-/- muscles were primed in a semi-exercised state, characterized by higher pool sizes of fatty acids oxidized to support muscle activity. These studies identify the role of IL15RA in the system-wide metabolic response to exercise and should enable translational studies to harness the potential of IL15RA blockade as a novel exercise mimetic strategy.


Intraoperative delivery of the Notch ligand Jagged-1 regenerates appendicular and craniofacial bone defects.

  • Daniel W Youngstrom‎ et al.
  • NPJ Regenerative medicine‎
  • 2017‎

Each year, 33% of US citizens suffer from a musculoskeletal condition that requires medical intervention, with direct medical costs approaching $1 trillion USD per year. Despite the ubiquity of skeletal dysfunction, there are currently limited safe and efficacious bone growth factors in clinical use. Notch is a cell-cell communication pathway that regulates self-renewal and differentiation within the mesenchymal/osteoblast lineage. The principal Notch ligand in bone, Jagged-1, is a potent osteoinductive protein that positively regulates post-traumatic bone healing in animals. This report describes the temporal regulation of Notch during intramembranous bone formation using marrow ablation as a model system and demonstrates decreased bone formation following disruption of Jagged-1 in mesenchymal progenitor cells. Notch gain-of-function using recombinant Jagged-1 protein on collagen scaffolds promotes healing of craniofacial (calvarial) and appendicular (femoral) surgical defects in both mice and rats. Localized delivery of Jagged-1 promotes bone apposition and defect healing, while avoiding the diffuse bone hypertrophy characteristic of the clinically problematic bone morphogenetic proteins. It is concluded that Jagged-1 is a bone-anabolic agent with therapeutic potential for regenerating traumatic or congenital bone defects.


Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion.

  • Sungguan Hong‎ et al.
  • Nature medicine‎
  • 2017‎

Type 2 diabetes and insulin resistance are associated with reduced glucose utilization in the muscle and poor exercise performance. Here we find that depletion of the epigenome modifier histone deacetylase 3 (HDAC3) specifically in skeletal muscle causes severe systemic insulin resistance in mice but markedly enhances endurance and resistance to muscle fatigue, despite reducing muscle force. This seemingly paradoxical phenotype is due to lower glucose utilization and greater lipid oxidation in HDAC3-depleted muscles, a fuel switch caused by the activation of anaplerotic reactions driven by AMP deaminase 3 (Ampd3) and catabolism of branched-chain amino acids. These findings highlight the pivotal role of amino acid catabolism in muscle fatigue and type 2 diabetes pathogenesis. Further, as genome occupancy of HDAC3 in skeletal muscle is controlled by the circadian clock, these results delineate an epigenomic regulatory mechanism through which the circadian clock governs skeletal muscle bioenergetics. These findings suggest that physical exercise at certain times of the day or pharmacological targeting of HDAC3 could potentially be harnessed to alter systemic fuel metabolism and exercise performance.


Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis.

  • Mathew C Casimiro‎ et al.
  • Oncotarget‎
  • 2015‎

Cyclin D1 is an important molecular driver of human breast cancer but better understanding of its oncogenic mechanisms is needed, especially to enhance efforts in targeted therapeutics. Currently, pharmaceutical initiatives to inhibit cyclin D1 are focused on the catalytic component since the transforming capacity is thought to reside in the cyclin D1/CDK activity. We initiated the following study to directly test the oncogenic potential of catalytically inactive cyclin D1 in an in vivo mouse model that is relevant to breast cancer. Herein, transduction of cyclin D1(-/-) mouse embryonic fibroblasts (MEFs) with the kinase dead KE mutant of cyclin D1 led to aneuploidy, abnormalities in mitotic spindle formation, autosome amplification, and chromosomal instability (CIN) by gene expression profiling. Acute transgenic expression of either cyclin D1(WT) or cyclin D1(KE) in the mammary gland was sufficient to induce a high CIN score within 7 days. Sustained expression of cyclin D1(KE) induced mammary adenocarcinoma with similar kinetics to that of the wild-type cyclin D1. ChIP-Seq studies demonstrated recruitment of cyclin D1(WT) and cyclin D1(KE) to the genes governing CIN. We conclude that the CDK-activating function of cyclin D1 is not necessary to induce either chromosomal instability or mammary tumorigenesis.


Proteasome inhibitor bortezomib is a novel therapeutic agent for focal radiation-induced osteoporosis.

  • Abhishek Chandra‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2018‎

Bone atrophy and its related fragility fractures are frequent, late side effects of radiotherapy in cancer survivors and have a detrimental impact on their quality of life. In another study, we showed that parathyroid hormone 1-34 and anti-sclerostin antibody attenuates radiation-induced bone damage by accelerating DNA repair in osteoblasts. DNA damage responses are partially regulated by the ubiquitin proteasome pathway. In the current study, we examined whether proteasome inhibitors have similar bone-protective effects against radiation damage. MG132 treatment greatly reduced radiation-induced apoptosis in cultured osteoblastic cells. This survival effect was owing to accelerated DNA repair as revealed by γH2AX foci and comet assays and to the up-regulation of Ku70 and DNA-dependent protein kinase, catalytic subunit, essential DNA repair proteins in the nonhomologous end-joining pathway. Administration of bortezomib (Bzb) reversed the loss of trabecular bone structure and strength in mice at 4 wk after focal radiation. Histomorphometry revealed that Bzb significantly increased the number of osteoblasts and activity in the irradiated area and suppressed the number and activity of osteoclasts, regardless of irradiation. Two weeks of Bzb treatment accelerated DNA repair in bone-lining osteoblasts and thus promoted their survival. Meanwhile, it also inhibited bone marrow adiposity. Taken together, we demonstrate a novel role of proteasome inhibitors in treating radiation-induced osteoporosis.-Chandra, A., Wang, L., Young, T., Zhong, L., Tseng, W.-J., Levine, M. A., Cengel, K., Liu, X. S., Zhang, Y., Pignolo, R. J., Qin, L. Proteasome inhibitor bortezomib is a novel therapeutic agent for focal radiation-induced osteoporosis.


Functional effects of muscle PGC-1alpha in aged animals.

  • Steven Yang‎ et al.
  • Skeletal muscle‎
  • 2020‎

PGC-1 (peroxisome-proliferator-activated receptor-γ coactivator-1) alpha is a potent transcriptional coactivator that coordinates the activation of numerous metabolic processes. Exercise strongly induces PGC-1alpha expression in muscle, and overexpression of PGC-1alpha in skeletal muscle activates mitochondrial oxidative metabolism and neovascularization, leading to markedly increased endurance. In light of these findings, PGC-1alpha has been proposed to protect from age-associated sarcopenia, bone loss, and whole-body metabolic dysfunction, although these findings have been controversial. We therefore comprehensively evaluated muscle and whole-body function and metabolism in 24-month-old transgenic mice that over-express PGC-1alpha in skeletal muscle. We find that the powerful effects of PGC-1alpha on promoting muscle oxidative capacity and protection from muscle fatigability persist in aged animals, although at the expense of muscle strength. However, skeletal muscle PGC-1alpha does not prevent bone loss and in fact accentuates it, nor does it have long-term benefit on whole-body metabolic composition or insulin sensitivity. Protection from sarcopenia is seen in male animals with overexpression of PGC-1alpha in skeletal muscle but not in female animals. In summary, muscle-specific expression of PGC-1alpha into old age has beneficial effects on muscle fatigability and may protect from sarcopenia in males, but does not improve whole-body metabolism and appears to worsen age-related trabecular bone loss.


Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction.

  • Manoj K Mishra‎ et al.
  • PloS one‎
  • 2017‎

Duchenne muscular dystrophy (DMD) is a fatal genetic disease caused by an absence of the 427kD muscle-specific dystrophin isoform. Utrophin is the autosomal homolog of dystrophin and when overexpressed, can compensate for the absence of dystrophin and rescue the dystrophic phenotype of the mdx mouse model of DMD. Utrophin is subject to miRNA mediated repression by several miRNAs including let-7c. Inhibition of utrophin: let-7c interaction is predicted to 'repress the repression' and increase utrophin expression. We developed and tested the ability of an oligonucleotide, composed of 2'-O-methyl modified bases on a phosphorothioate backbone, to anneal to the utrophin 3'UTR and prevent let-7c miRNA binding, thereby upregulating utrophin expression and improving the dystrophic phenotype in vivo. Suppression of utrophin: let-7c interaction using bi-weekly intraperitoneal injections of let7 site blocking oligonucleotides (SBOs) for 1 month in the mdx mouse model for DMD, led to increased utrophin expression along with improved muscle histology, decreased fibrosis and increased specific force. The functional improvement of dystrophic muscle achieved using let7-SBOs suggests a novel utrophin upregulation-based therapeutic strategy for DMD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: