Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,119 papers

Mapping resting-state brain networks in conscious animals.

  • Nanyin Zhang‎ et al.
  • Journal of neuroscience methods‎
  • 2010‎

In the present study we mapped brain functional connectivity in the conscious rat at the "resting state" based on intrinsic blood-oxygenation-level dependent (BOLD) fluctuations. The conscious condition eliminated potential confounding effects of anesthetic agents on the connectivity between brain regions. Indeed, using correlational analysis we identified multiple cortical and subcortical regions that demonstrated temporally synchronous variation with anatomically well-defined regions that are crucial to cognitive and emotional information processing including the prefrontal cortex (PFC), thalamus and retrosplenial cortex. The functional connectivity maps created were stringently validated by controlling for false positive detection of correlation, the physiologic basis of the signal source, as well as quantitatively evaluating the reproducibility of maps. Taken together, the present study has demonstrated the feasibility of assessing functional connectivity in conscious animals using fMRI and thus provided a convenient and non-invasive tool to systematically investigate the connectional architecture of selected brain networks in multiple animal models.


Cardiac hypertrophy involves both myocyte hypertrophy and hyperplasia in anemic zebrafish.

  • Xiaojing Sun‎ et al.
  • PloS one‎
  • 2009‎

An adult zebrafish heart possesses a high capacity of regeneration. However, it has been unclear whether and how myocyte hyperplasia contributes to cardiac remodeling in response to biomechanical stress and whether myocyte hypertrophy exists in the zebrafish. To address these questions, we characterized the zebrafish mutant tr265/tr265, whose Band 3 mutation disrupts erythrocyte formation and results in anemia. Although Band 3 does not express and function in the heart, the chronic anemia imposes a sequential biomechanical stress towards the heart.


Probucol Protects Against Atherosclerosis Through Lipid-lowering and Suppressing Immune Maturation of CD11c+ Dendritic Cells in STZ-induced Diabetic LDLR-/- Mice.

  • Hong Zhu‎ et al.
  • Journal of cardiovascular pharmacology‎
  • 2015‎

Probucol, an agent characterized by lipid-lowering and antioxidant property, retards atherosclerosis effectively. To test the hypothesis that probucol might act its antiatherosclerotic role by suppressing immune maturation of dendritic cells (DCs), 7-week-old LDLR mice were rendered diabetic with streptozotocin (STZ) and then fed either a high-fat diet only or added with 0.5% (wt/wt) probucol for 4 months, and human monocyte-derived dendritic cells were preincubated with or without probucol and stimulated by oxidized low-density lipoprotein. In STZ-induced diabetic LDLR mice, probucol treatment significantly lowered plasma total cholesterol and high-density lipoprotein-cholesterol levels; regressed aortic atherosclerotic lesions; reduced splenic CD40, CD80, CD86, MHC-II expression, and plasma IL-12p70 production; and decreased the expression of CD11c DCs within atherosclerotic lesions. In vitro, oxidized low-density lipoprotein promoted human monocyte-derived dendritic cells maturation; stimulated CD40, CD86, CD1a, HLA-DR expression; increased tumor necrosis factor-α production; and decreased IL-4 production. However, these effects were obviously inhibited by probucol pretreatment. In conclusion, our study indicated that probucol effectively retarded atherosclerosis at least partly through lipid-lowering and inhibiting immune maturation of CD11c DCs in STZ-induced diabetic LDLR mice.


CXCR4 attenuates cardiomyocytes mitochondrial dysfunction to resist ischaemia-reperfusion injury.

  • Wen-Feng Cai‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

The chemokine (C-X-C motif) receptor 4 (CXCR4) is expressed on native cardiomyocytes and can modulate isolated cardiomyocyte contractility. This study examines the role of CXCR4 in cardiomyocyte response to ischaemia-reperfusion (I/R) injury. Isolated adult rat ventricular cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) to simulate I/R injury. In response to H/R injury, the decrease in CXCR4 expression was associated with dysfunctional energy metabolism indicated by an increased adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratio. CXCR4-overexpressing cardiomyocytes were used to determine whether such overexpression (OE) can prevent bio-energetic disruption-associated cell death. CXCR4 OE was performed with adenoviral infection with CXCR4 encoding-gene or non-translated nucleotide sequence (Control). The increased CXCR4 expression was observed in cardiomyocytes post CXCR4-adenovirus transduction and this OE significantly reduced the cardiomyocyte contractility under basal conditions. Although the same extent of H/R-provoked cytosolic calcium overload was measured, the hydrogen peroxide-induced decay of mitochondrial membrane potential was suppressed in CXCR4 OE group compared with control group, and the mitochondrial swelling was significantly attenuated in CXCR4 group, implicating that CXCR4 OE prevents permeability transition pore opening exposure to overload calcium. Interestingly, this CXCR4-induced mitochondrial protective effect is associated with the enhanced signal transducer and activator of transcription 3 (expression in mitochondria. Consequently, in the presence of H/R, mitochondrial dysfunction was mitigated and cardiomyocyte death was decreased to 65% in the CXCR4 OE group as compared with the control group. I/R injury leads to the reduction in CXCR4 in cardiomyocytes associated with the dysfunctional energy metabolism, and CXCR4 OE can alleviate mitochondrial dysfunction to improve cardiomyocyte survival.


Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia.

  • Chao Liu‎ et al.
  • Disease models & mechanisms‎
  • 2015‎

Apolipoprotein C-II (APOC2) is an obligatory activator of lipoprotein lipase. Human patients with APOC2 deficiency display severe hypertriglyceridemia while consuming a normal diet, often manifesting xanthomas, lipemia retinalis and pancreatitis. Hypertriglyceridemia is also an important risk factor for development of cardiovascular disease. Animal models to study hypertriglyceridemia are limited, with no Apoc2-knockout mouse reported. To develop a genetic model of hypertriglyceridemia, we generated an apoc2 mutant zebrafish characterized by the loss of Apoc2 function. apoc2 mutants show decreased plasma lipase activity and display chylomicronemia and severe hypertriglyceridemia, which closely resemble the phenotype observed in human patients with APOC2 deficiency. The hypertriglyceridemia in apoc2 mutants is rescued by injection of plasma from wild-type zebrafish or by injection of a human APOC2 mimetic peptide. Consistent with a previous report of a transient apoc2 knockdown, apoc2 mutant larvae have a minor delay in yolk consumption and angiogenesis. Furthermore, apoc2 mutants fed a normal diet accumulate lipid and lipid-laden macrophages in the vasculature, which resemble early events in the development of human atherosclerotic lesions. In addition, apoc2 mutant embryos show ectopic overgrowth of pancreas. Taken together, our data suggest that the apoc2 mutant zebrafish is a robust and versatile animal model to study hypertriglyceridemia and the mechanisms involved in the pathogenesis of associated human diseases.


Brain-derived neurotrophic factor regulates TRPC3/6 channels and protects against myocardial infarction in rodents.

  • Pengzhou Hang‎ et al.
  • International journal of biological sciences‎
  • 2015‎

Brain-derived neurotrophic factor (BDNF) is associated with coronary artery diseases. However, its role and mechanism in myocardial infarction (MI) is not fully understood.


Blood coagulation parameters and platelet indices: changes in normal and preeclamptic pregnancies and predictive values for preeclampsia.

  • Lei Han‎ et al.
  • PloS one‎
  • 2014‎

Preeclampsia (PE) is an obstetric disorder with high morbidity and mortality rates but without clear pathogeny. The dysfunction of the blood coagulation-fibrinolysis system is a salient characteristic of PE that varies in severity, and necessitates different treatments. Therefore, it is necessary to find suitable predictors for the onset and severity of PE.


Preoperative functional MRI localization of language areas in Chinese patients with brain tumors: Validation with intraoperative electrocortical mapping.

  • Hechun Xia‎ et al.
  • Neural regeneration research‎
  • 2012‎

Ten Chinese patients with brain tumors involving language regions were selected. Preoperative functional MRI was performed to locate Broca's or Wernicke's area, and the cortex that was essential for language function was determined by electrocortical mapping. A site-by-site comparison between functional MRI and electrocortical mapping was performed with the aid of a neuronavigation device. Results showed that the sensitivity and specificity of preoperative functional MRI were 80.0% and 85.0% in Broca's area and 66.6% and 85.2% in Wernicke's area, respectively. These experimental findings indicate that functional MRI is an accurate, reliable technique with which to identify the location of Wernicke's area or Broca's area in patients with brain tumors.


PiggyBac mediated multiplex gene transfer in mouse embryonic stem cell.

  • Xibin Lu‎ et al.
  • PloS one‎
  • 2014‎

PiggyBac system has been shown to have a high efficiency to mediate gene transfer. However, there are no reports on its efficiency to mediate multiplex transgenes in mouse embryonic stem cells. Here we first established an immortalized feeder cell line by introducing four antibiotic resistance genes simultaneously into the original SNL 76/7 feeder cell line utilizing the PiggyBac system. This is the feeder cell line with the most diverse types of antibiotic resistance genes reported so far, which will enable researchers to perform simultaneous multiplex gene transfer or gene targeting experiments in ES cells. With such feeder cell line, we were able to quantitatively characterize the transposition efficiency of PiggyBac system in mouse ES cells using five transposons carrying different inducible fluorescence proteins and antibiotic resistance genes, and the efficiency ranged from about 2% for one transposon to 0.5% for five transposons. The highly efficient multiplex gene transfer mediated by PiggyBac will no doubt provide researchers with more choices in biomedical research and development.


The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods.

  • Zhijian Cao‎ et al.
  • Nature communications‎
  • 2013‎

Representing a basal branch of arachnids, scorpions are known as 'living fossils' that maintain an ancient anatomy and are adapted to have survived extreme climate changes. Here we report the genome sequence of Mesobuthus martensii, containing 32,016 protein-coding genes, the most among sequenced arthropods. Although M. martensii appears to evolve conservatively, it has a greater gene family turnover than the insects that have undergone diverse morphological and physiological changes, suggesting the decoupling of the molecular and morphological evolution in scorpions. Underlying the long-term adaptation of scorpions is the expansion of the gene families enriched in basic metabolic pathways, signalling pathways, neurotoxins and cytochrome P450, and the different dynamics of expansion between the shared and the scorpion lineage-specific gene families. Genomic and transcriptomic analyses further illustrate the important genetic features associated with prey, nocturnal behaviour, feeding and detoxification. The M. martensii genome reveals a unique adaptation model of arthropods, offering new insights into the genetic bases of the living fossils.


The development and expression of physical nicotine dependence corresponds to structural and functional alterations in the anterior cingulate-precuneus pathway.

  • Wei Huang‎ et al.
  • Brain and behavior‎
  • 2014‎

Perturbations in neural function provoked by a drug are thought to induce neural adaptations, which, in the absence of the drug, give rise to withdrawal symptoms. Previously published structural data from this study indicated that the progressive development of physical dependence is associated with increasing density of white matter tracts between the anterior cingulum bundle and the precuneus.


The proteasome inhibitor, MG132, attenuates diabetic nephropathy by inhibiting SnoN degradation in vivo and in vitro.

  • Wei Huang‎ et al.
  • BioMed research international‎
  • 2014‎

Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF- β/Smad signaling in DN is still unclear. In this study, diabetic rats were randomly divided into a diabetic control group (DC group) and a proteasome inhibitor (MG132) diabetes therapy group (DT group). Kidney damage parameters and the expression of SnoN, Smurf2, and TGF-β were observed. Simultaneously, we cultured rat glomerular mesangial cells (GMCs) stimulated with high glucose, and SnoN and Arkadia expression were measured. Results demonstrated that 24-hour urine protein, ACR, BUN, and the expression of Smurf2 and TGF- β were significantly increased (P < 0.05), whereas SnoN was significantly decreased in the DC group (P < 0.05). However, these changes diminished after treatment with MG132. SnoN expression in GMCs decreased significantly (P < 0.05), but Arkadia expression gradually increased due to high glucose stimulation (P < 0.05), which could be almost completely reversed by MG132 (P < 0.05). The present results support the hypothesis that MG132 may alleviate kidney damage by inhibiting SnoN degradation and TGF-β activation, suggesting that the ubiquitin-proteasome pathway may become a new therapeutic target for DN.


Neural representations of the self and the mother for Chinese individuals.

  • Gaowa Wuyun‎ et al.
  • PloS one‎
  • 2014‎

An important question in social neuroscience is the similarities and differences in the neural representations between the self and close others. Most studies examining this topic have identified the medial prefrontal cortex (MPFC) region as the primary area involved in this process. However, several studies have reported conflicting data, making further investigation of this topic very important. In this functional magnetic resonance imaging (fMRI) study, we investigated the brain activity in the anterior cingulate cortex (ACC) when Chinese participants passively listened to their self-name (SN), their mother's name (MN), and unknown names (UN). The results showed that compared with UN recognition, SN perception was associated with a robust activation in a widely distributed bilateral network, including the cortical midline structure (the MPFC and ACC), the inferior frontal gyrus, and the middle temporal gyrus. The SN invoked the bilateral superior temporal gyrus in contrast to the MN; the MN recognition provoked a stronger activation in the central and posterior brain regions in contrast to the SN recognition. The SN and MN caused an activation of overlapping areas, namely, the ACC, MPFC, and superior frontal gyrus. These results suggest that Chinese individuals utilize certain common brain region in processing both the SN and the MN. The present findings provide evidence for the neural basis of the self and close others for Chinese individuals.


P130cas is required for TGF-β1-mediated epithelial-mesenchymal transition in lung cancer.

  • Bo Deng‎ et al.
  • Oncology letters‎
  • 2014‎

In lung cancer A549 cells, the present study evaluated the associations between p130cas expression and the activation of p38 or Smad2, which are components of two of the main signaling pathways of transforming growth factor-β1 (TGF-β1), i.e., epithelial-mesenchymal transition (EMT) and apoptosis, respectively. TGF-β1-induced EMT was investigated by inspecting cell shape and cell migration, and by testing E-Cadherin, N-Cadherin and Vimentin biomarkers in p130cas-RNA interference (RNAi)-A549 cells. The changes in TGF-β1-induced apoptosis, i.e., cleaved Caspase-3 levels, were additionally analyzed following p130cas-RNAi. p130cas-knockdown decreased the phosphorylated (p)-p38 expression level, and blockaded the TGF-β1-induced activation of p-p38 in the A549 cells. p130cas-knockdown arrested cell migration and impaired TGF-β1-induced EMT in the A549 cells, characterized by changes in cell morphology and biomarker levels. However, p130cas-knockdown had no impact on the activation of Smad2 and the cleavage of Caspase-3. These results indicate that p130cas is a novel molecular 'rheostat' that alters the function of the TGF-β1 signaling pathway from tumor suppression to tumor promotion in lung cancer cells. The underlying mechanism warrants further study.


Mutation of the RDR1 gene caused genome-wide changes in gene expression, regional variation in small RNA clusters and localized alteration in DNA methylation in rice.

  • Ningning Wang‎ et al.
  • BMC plant biology‎
  • 2014‎

Endogenous small (sm) RNAs (primarily si- and miRNAs) are important trans/cis-acting regulators involved in diverse cellular functions. In plants, the RNA-dependent RNA polymerases (RDRs) are essential for smRNA biogenesis. It has been established that RDR2 is involved in the 24 nt siRNA-dependent RNA-directed DNA methylation (RdDM) pathway. Recent studies have suggested that RDR1 is involved in a second RdDM pathway that relies mostly on 21 nt smRNAs and functions to silence a subset of genomic loci that are usually refractory to the normal RdDM pathway in Arabidopsis. Whether and to what extent the homologs of RDR1 may have similar functions in other plants remained unknown.


Loss of β-catenin triggers oxidative stress and impairs hematopoietic regeneration.

  • William Lento‎ et al.
  • Genes & development‎
  • 2014‎

Accidental or deliberate ionizing radiation exposure can be fatal due to widespread hematopoietic destruction. However, little is known about either the course of injury or the molecular pathways that regulate the subsequent regenerative response. Here we show that the Wnt signaling pathway is critically important for regeneration after radiation-induced injury. Using Wnt reporter mice, we show that radiation triggers activation of Wnt signaling in hematopoietic stem and progenitor cells. β-Catenin-deficient mice, which lack the ability to activate canonical Wnt signaling, exhibited impaired hematopoietic stem cell regeneration and bone marrow recovery after radiation. We found that, as part of the mechanism, hematopoietic stem cells lacking β-catenin fail to suppress the generation of reactive oxygen species and cannot resolve DNA double-strand breaks after radiation. Consistent with the impaired response to radiation, β-catenin-deficient mice are also unable to recover effectively after chemotherapy. Collectively, these data indicate that regenerative responses to distinct hematopoietic injuries share a genetic dependence on β-catenin and raise the possibility that modulation of Wnt signaling may be a path to improving bone marrow recovery after damage.


Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging.

  • Quli Fan‎ et al.
  • Journal of the American Chemical Society‎
  • 2014‎

Developing multifunctional and easily prepared nanoplatforms with integrated different modalities is highly challenging for molecular imaging. Here, we report the successful transfer of an important molecular target, melanin, into a novel multimodality imaging nanoplatform. Melanin is abundantly expressed in melanotic melanomas and thus has been actively studied as a target for melanoma imaging. In our work, the multifunctional biopolymer nanoplatform based on ultrasmall (<10 nm) water-soluble melanin nanoparticle (MNP) was developed and showed unique photoacoustic property and natural binding ability with metal ions (for example, (64)Cu(2+), Fe(3+)). Therefore, MNP can serve not only as a photoacoustic contrast agent, but also as a nanoplatform for positron emission tomography (PET) and magnetic resonance imaging (MRI). Traditional passive nanoplatforms require complicated and time-consuming processes for prebuilding reporting moieties or chemical modifications using active groups to integrate different contrast properties into one entity. In comparison, utilizing functional biomarker melanin can greatly simplify the building process. We further conjugated αvβ3 integrins, cyclic c(RGDfC) peptide, to MNPs to allow for U87MG tumor accumulation due to its targeting property combined with the enhanced permeability and retention (EPR) effect. The multimodal properties of MNPs demonstrate the high potential of endogenous materials with multifunctions as nanoplatforms for molecular theranostics and clinical translation.


High gene delivery efficiency of alkylated low-molecular-weight polyethylenimine through gemini surfactant-like effect.

  • Shan Liu‎ et al.
  • International journal of nanomedicine‎
  • 2014‎

To our knowledge, the mechanism underlying the high transfection efficiency of alkylated low-molecular-weight polyethylenimine (PEI) is not yet well understood. In this work, we grafted branched PEI (molecular weight of 1,800 Da; bPEI1800) with lauryl chains (C₁₂), and found that bPEI1800-C₁₂ was structurally similar to gemini surfactant and could similarly assemble into micelle-like particles. Stability, cellular uptake, and lysosome escape ability of bPEI1800-C₁₂/DNA polyplexes were all greatly enhanced after C₁₂ grafting. bPEI1800-C₁₂/DNA polyplexes exhibited significantly higher transfection efficiency than Lipofectamine 2000 in the presence of serum. Bioluminescence imaging showed that systemic injection of bPEI1800-C₁₂/DNA polyplexes resulted in intensive luciferase expression in vivo and bioluminescence signals that could be detected even in the head. Altogether, the high transfection efficacy of bPEI1800-C₁₂ was because bPEI1800-C₁₂, being an analog of gemini surfactant, facilitated lysosome escape and induced the coil-globule transition of DNA to assemble into a highly organized micelle-like structure that showed high stability.


Small-sized polymeric micelles incorporating docetaxel suppress distant metastases in the clinically-relevant 4T1 mouse breast cancer model.

  • Yunfei Li‎ et al.
  • BMC cancer‎
  • 2014‎

The small size of ultra-small nanoparticles makes them suitable for lymphatic delivery, and many recent studies have examined their role in anti-metastasis therapy. However, the anti-metastatic efficacy of small-sized nanocarriers loaded with taxanes such as docetaxel has not yet been investigated in malignant breast cancer.


Inhibition of autophagy potentiates anticancer property of 20(S)-ginsenoside Rh2 by promoting mitochondria-dependent apoptosis in human acute lymphoblastic leukaemia cells.

  • Ting Xia‎ et al.
  • Oncotarget‎
  • 2016‎

Acute lymphoblastic leukaemia (ALL) is the most prevalent childhood malignancy. Although most children with ALL are cured, there is still a group of patients for which therapy fails owing to severe toxicities and drug resistance. Ginsenoside Rh2 (GRh2), a major bioactive component isolated from Panax ginseng, has been shown to have a therapeutic effect on some tumors. However, the molecular mechanisms of cell death induced by 20(S)-GRh2 in ALL cells remains unclear. In this study, we showed that 20(S)-GRh2 inhibited the cell growth and induced mitochondria-dependent apoptosis and autophagy. But it has no cytotoxic effect on human normal blood cells. Furthermore, autophagy plays a protective role in 20(S)-GRh2-induced apoptosis in ALL cell lines and human primary ALL cells. We demonstrated that either genetic or pharmacologic inhibition of autophagy could be more effective in reducing viability and enhancing 20(S)-GRh2-induced toxicity than 20(S)-GRh2 treatment alone. In addition, inhibition of autophagy could aggravate mitochondrial ROS generation and mitochondrial damage, and then accelerate mitochondria-dependent apoptosis. Taken together, these results suggest that inhibition of autophagy can sensitize ALL cells towards 20(S)-GRh2. The appropriate inhibition of autophagy could provide a powerful strategy to increase the potency of 20(S)-GRh2 as a novel anticancer agent for ALL therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: