Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Panic results in unique molecular and network changes in the amygdala that facilitate fear responses.

  • A I Molosh‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Recurrent panic attacks (PAs) are a common feature of panic disorder (PD) and post-traumatic stress disorder (PTSD). Several distinct brain regions are involved in the regulation of panic responses, such as perifornical hypothalamus (PeF), periaqueductal gray, amygdala and frontal cortex. We have previously shown that inhibition of GABA synthesis in the PeF produces panic-vulnerable rats. Here, we investigate the mechanisms by which a panic-vulnerable state could lead to persistent fear. We first show that optogenetic activation of glutamatergic terminals from the PeF to the basolateral amygdala (BLA) enhanced the acquisition, delayed the extinction and induced the persistence of fear responses 3 weeks later, confirming a functional PeF-amygdala pathway involved in fear learning. Similar to optogenetic activation of PeF, panic-prone rats also exhibited delayed extinction. Next, we demonstrate that panic-prone rats had altered inhibitory and enhanced excitatory synaptic transmission of the principal neurons, and reduced protein levels of metabotropic glutamate type 2 receptor (mGluR2) in the BLA. Application of an mGluR2-positive allosteric modulator (PAM) reduced glutamate neurotransmission in the BLA slices from panic-prone rats. Treating panic-prone rats with mGluR2 PAM blocked sodium lactate (NaLac)-induced panic responses and normalized fear extinction deficits. Finally, in a subset of patients with comorbid PD, treatment with mGluR2 PAM resulted in complete remission of panic symptoms. These data demonstrate that a panic-prone state leads to specific reduction in mGluR2 function within the amygdala network and facilitates fear, and mGluR2 PAMs could be a targeted treatment for panic symptoms in PD and PTSD patients.


Anxiety-like behavior is modulated by a discrete subpopulation of interneurons in the basolateral amygdala.

  • W A Truitt‎ et al.
  • Neuroscience‎
  • 2009‎

The basolateral amygdala (BL) is a putative site for regulating anxiety, where inhibition and excitation respectively lead to decreases and increases in anxiety-like behaviors. The BL contains local networks of GABAergic interneurons that are subdivided into classes based on neurochemical content, and are hypothesized to regulate unique functional responses of local glutamatergic projection neurons. Recently it was demonstrated that lesioning a portion of the BL interneuronal population, those interneurons that express neurokinin1 receptors (NK(1r)), resulted in anxiety-like behavior. In the current study, these NK(1r) expressing cells of the BL are further phenotypically characterized, demonstrating approximately 80% co-expression with GABA thus confirming them as GABAergic interneurons. These NK(1r) interneurons also colocalize with two distinct populations of BL interneurons as defined by the neuropeptide content. Of the NK(1r) positive cells, 41.8% are also positive for neuropeptide Y (NPY) and 39.7% of the NK(1r) positive cells are also positive for cholecystokinin (CCK). In addition to enhancing the phenotypic characterization, the extent to which the NK(1r) cells of amygdala nuclei contribute to anxiety-like responses was also investigated. Lesioning the NK(1r) expressing interneurons, with a stable form of substance P (SSP; the natural ligand for NK(1r)) coupled to the targeted toxin saporin (SAP), in the anterior and posterior divisions of the BL was correlated to increased anxiety-like behaviors compared to baseline and control treated rats. Furthermore the phenotypic and regional selectivity of the lesions was also confirmed.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: