2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

RsfA (YbeB) proteins are conserved ribosomal silencing factors.

  • Roman Häuser‎ et al.
  • PLoS genetics‎
  • 2012‎

The YbeB (DUF143) family of uncharacterized proteins is encoded by almost all bacterial and eukaryotic genomes but not archaea. While they have been shown to be associated with ribosomes, their molecular function remains unclear. Here we show that YbeB is a ribosomal silencing factor (RsfA) in the stationary growth phase and during the transition from rich to poor media. A knock-out of the rsfA gene shows two strong phenotypes: (i) the viability of the mutant cells are sharply impaired during stationary phase (as shown by viability competition assays), and (ii) during transition from rich to poor media the mutant cells adapt slowly and show a growth block of more than 10 hours (as shown by growth competition assays). RsfA silences translation by binding to the L14 protein of the large ribosomal subunit and, as a consequence, impairs subunit joining (as shown by molecular modeling, reporter gene analysis, in vitro translation assays, and sucrose gradient analysis). This particular interaction is conserved in all species tested, including Escherichia coli, Treponema pallidum, Streptococcus pneumoniae, Synechocystis PCC 6803, as well as human mitochondria and maize chloroplasts (as demonstrated by yeast two-hybrid tests, pull-downs, and mutagenesis). RsfA is unrelated to the eukaryotic ribosomal anti-association/60S-assembly factor eIF6, which also binds to L14, and is the first such factor in bacteria and organelles. RsfA helps cells to adapt to slow-growth/stationary phase conditions by down-regulating protein synthesis, one of the most energy-consuming processes in both bacterial and eukaryotic cells.


Distinct mucosal microbial communities in infants with surgical necrotizing enterocolitis correlate with age and antibiotic exposure.

  • Joann Romano-Keeler‎ et al.
  • PloS one‎
  • 2018‎

Necrotizing enterocolitis (NEC) is the most common surgical emergency in preterm infants, and pathogenesis associates with changes in the fecal microbiome. As fecal samples incompletely represent microbial communities in intestinal mucosa, we sought to determine the NEC tissue-specific microbiome and assess its contribution to pathogenesis.


Characterization of circulating RSV strains among subjects in the OUTSMART-RSV surveillance program during the 2016-17 winter viral season in the United States.

  • Alexey Ruzin‎ et al.
  • PloS one‎
  • 2018‎

Respiratory syncytial virus (RSV) is an established cause of serious lower respiratory disease in infants, elderly and high-risk populations. The OUTSMART surveillance program aims to characterize patient populations and currently circulating RSV strains, and monitor temporal and geographic evolution of RSV F and G proteins in the U.S.


Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy.

  • Sivaranjani Namasivayam‎ et al.
  • Microbiome‎
  • 2017‎

Effective treatment of Mycobacterium tuberculosis (Mtb) infection requires at least 6 months of daily therapy with multiple orally administered antibiotics. Although this drug regimen is administered annually to millions worldwide, the impact of such intensive antimicrobial treatment on the host microbiome has never been formally investigated. Here, we characterized the longitudinal outcome of conventional isoniazid-rifampin-pyrazinamide (HRZ) TB drug administration on the diversity and composition of the intestinal microbiota in Mtb-infected mice by means of 16S rRNA sequencing. We also investigated the effects of each of the individual antibiotics alone and in different combinations.


Type 1 Diabetes: Urinary Proteomics and Protein Network Analysis Support Perturbation of Lysosomal Function.

  • Harinder Singh‎ et al.
  • Theranostics‎
  • 2017‎

While insulin replacement therapy restores the health and prevents the onset of diabetic complications (DC) for many decades, some T1D patients have elevated hemoglobin A1c values suggesting poor glycemic control, a risk factor of DC. We surveyed the stool microbiome and urinary proteome of a cohort of 220 adolescents and children, half of which had lived with T1D for an average of 7 years and half of which were healthy siblings. Phylogenetic analysis of the 16S rRNA gene did not reveal significant differences in gut microbial alpha-diversity comparing the two cohorts. The urinary proteome of T1D patients revealed increased abundances of several lysosomal proteins that correlated with elevated HbA1c values. In silico protein network analysis linked such proteins to extracellular matrix components and the glycoprotein LRG1. LRG1 is a prominent inflammation and neovascularization biomarker. We hypothesize that these changes implicate aberrant glycation of macromolecules that alter lysosomal function and metabolism in renal tubular epithelial cells, cells that line part of the upper urinary tract.


Studying protein complexes by the yeast two-hybrid system.

  • Seesandra V Rajagopala‎ et al.
  • Methods (San Diego, Calif.)‎
  • 2012‎

Protein complexes are typically analyzed by affinity purification and subsequent mass spectrometric analysis. However, in most cases the structure and topology of the complexes remains elusive from such studies. Here we investigate how the yeast two-hybrid system can be used to analyze direct interactions among proteins in a complex. First we tested all pairwise interactions among the seven proteins of Escherichia coli DNA polymerase III as well as an uncharacterized complex that includes MntR and PerR. Four and seven interactions were identified in these two complexes, respectively. In addition, we review Y2H data for three other complexes of known structure which serve as "gold-standards", namely Varicella Zoster Virus (VZV) ribonucleotide reductase (RNR), the yeast proteasome, and bacteriophage lambda. Finally, we review an Y2H analysis of the human spliceosome which may serve as an example for a dynamic mega-complex.


S. aureus Evades Macrophage Killing through NLRP3-Dependent Effects on Mitochondrial Trafficking.

  • Taylor S Cohen‎ et al.
  • Cell reports‎
  • 2018‎

Clinical severity of Staphylococcus aureus respiratory infection correlates with alpha toxin (AT) expression. AT activates the NLRP3 inflammasome; deletion of Nlrp3, or AT neutralization, protects mice from lethal S. aureus pneumonia. We tested the hypothesis that this protection is not due to a reduction in inflammasome-dependent cytokines (IL-1β/IL-18) but increased bactericidal function of macrophages. In vivo, neutralization of AT or NLRP3 improved bacterial clearance and survival, while blocking IL-1β/IL-18 did not. Primary human monocytes were used in vitro to determine the mechanism through which NLRP3 alters bacterial killing. In cells treated with small interfering RNA (siRNA) targeting NLRP3 or infected with AT-null S. aureus, mitochondria co-localize with bacterial-containing phagosomes. Mitochondrial engagement activates caspase-1, a process dependent on complex II of the electron transport chain, near the phagosome, promoting its acidification. These data demonstrate a mechanism utilized by S. aureus to sequester itself from antimicrobial processes within the cell.


Evaluation of the upper airway microbiome and immune response with nasal epithelial lining fluid absorption and nasal washes.

  • Meghan H Shilts‎ et al.
  • Scientific reports‎
  • 2020‎

Despite being commonly used to collect upper airway epithelial lining fluid, nasal washes are poorly reproducible, not suitable for serial sampling, and limited by a dilution effect. In contrast, nasal filters lack these limitations and are an attractive alternative. To examine whether nasal filters are superior to nasal washes as a sampling method for the characterization of the upper airway microbiome and immune response, we collected paired nasal filters and washes from a group of 40 healthy children and adults. To characterize the upper airway microbiome, we used 16S ribosomal RNA and shotgun metagenomic sequencing. To characterize the immune response, we measured total protein using a BCA assay and 53 immune mediators using multiplex magnetic bead-based assays. We conducted statistical analyses to compare common microbial ecology indices and immune-mediator median fluorescence intensities (MFIs) between sample types. In general, nasal filters were more likely to pass quality control in both children and adults. There were no significant differences in microbiome community richness, α-diversity, or structure between pediatric samples types; however, these were all highly dissimilar between adult sample types. In addition, there were significant differences in the abundance of amplicon sequence variants between sample types in children and adults. In adults, total proteins were significantly higher in nasal filters than nasal washes; consequently, the immune-mediator MFIs were not well detected in nasal washes. Based on better quality control sequencing metrics and higher immunoassay sensitivity, our results suggest that nasal filters are a superior sampling method to characterize the upper airway microbiome and immune response in both children and adults.


Defective IgA response to atypical intestinal commensals in IL-21 receptor deficiency reshapes immune cell homeostasis and mucosal immunity.

  • Hyeseon Cho‎ et al.
  • Mucosal immunology‎
  • 2019‎

Despite studies indicating the effects of IL-21 signaling in intestinal inflammation, its roles in intestinal homeostasis and infection are not yet clear. Here, we report potent effects of commensal microbiota on the phenotypic manifestations of IL-21 receptor deficiency. IL-21 is produced highly in the small intestine and appears to be critical for mounting an IgA response against atypical commensals such as segmented filamentous bacteria and Helicobacter, but not to the majority of commensals. In the presence of these atypical commensals, IL-21R-deficient mice exhibit reduced numbers of germinal center and IgA+ B cells and expression of activation-induced cytidine deaminase in Peyer's patches as well as a significant decrease in small intestine IgA+ plasmablasts and plasma cells, leading to higher bacterial burdens and subsequent expansion of Th17 and Treg cells. These microbiota-mediated secondary changes in turn enhance T cell responses to an oral antigen and strikingly dampen Citrobacter rodentium-induced immunopathology, demonstrating a complex interplay between IL-21-mediated mucosal immunity, microbiota, and pathogens.


Metagenomic exploration of viruses throughout the Indian Ocean.

  • Shannon J Williamson‎ et al.
  • PloS one‎
  • 2012‎

The characterization of global marine microbial taxonomic and functional diversity is a primary goal of the Global Ocean Sampling Expedition. As part of this study, 19 water samples were collected aboard the Sorcerer II sailing vessel from the southern Indian Ocean in an effort to more thoroughly understand the lifestyle strategies of the microbial inhabitants of this ultra-oligotrophic region. No investigations of whole virioplankton assemblages have been conducted on waters collected from the Indian Ocean or across multiple size fractions thus far. Therefore, the goals of this study were to examine the effect of size fractionation on viral consortia structure and function and understand the diversity and functional potential of the Indian Ocean virome. Five samples were selected for comprehensive metagenomic exploration; and sequencing was performed on the microbes captured on 3.0-, 0.8- and 0.1 µm membrane filters as well as the viral fraction (<0.1 µm). Phylogenetic approaches were also used to identify predicted proteins of viral origin in the larger fractions of data from all Indian Ocean samples, which were included in subsequent metagenomic analyses. Taxonomic profiling of viral sequences suggested that size fractionation of marine microbial communities enriches for specific groups of viruses within the different size classes and functional characterization further substantiated this observation. Functional analyses also revealed a relative enrichment for metabolic proteins of viral origin that potentially reflect the physiological condition of host cells in the Indian Ocean including those involved in nitrogen metabolism and oxidative phosphorylation. A novel classification method, MGTAXA, was used to assess virus-host relationships in the Indian Ocean by predicting the taxonomy of putative host genera, with Prochlorococcus, Acanthochlois and members of the SAR86 cluster comprising the most abundant predictions. This is the first study to holistically explore virioplankton dynamics across multiple size classes and provides unprecedented insight into virus diversity, metabolic potential and virus-host interactions.


Microbial burden and viral exacerbations in a longitudinal multicenter COPD cohort.

  • Jerome Bouquet‎ et al.
  • Respiratory research‎
  • 2020‎

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by frequent exacerbation phenotypes independent of disease stage. Increasing evidence shows that the microbiota plays a role in disease progression and severity, but long-term and international multicenter assessment of the variations in viral and bacterial communities as drivers of exacerbations are lacking.


A Novel Class of Small Molecule Agonists with Preference for Human over Mouse TLR4 Activation.

  • Jason D Marshall‎ et al.
  • PloS one‎
  • 2016‎

The best-characterized Toll-like receptor 4 (TLR4) ligands are lipopolysaccharide (LPS) and its chemically modified and detoxified variant, monophosphoryl lipid A (MPL). Although both molecules are active for human TLR4, they demonstrate a potency preference for mouse TLR4 based on data from transfected cell lines and primary cells of both species. After a high throughput screening process of small molecule libraries, we have discovered a new class of TLR4 agonist with a species preference profile differing from MPL. Products of the 4-component Ugi synthesis reaction were demonstrated to potently trigger human TLR4-transfected HEK cells but not mouse TLR4, although inclusion of the human MD2 with mTLR4 was able to partially recover activity. Co-expression of CD14 was not required for optimal activity of Ugi compounds on transfected cells, as it is for LPS. The species preference profile for the panel of Ugi compounds was found to be strongly active for human and cynomolgus monkey primary cells, with reduced but still substantial activity for most Ugi compounds on guinea pig cells. Mouse, rat, rabbit, ferret, and cotton rat cells displayed little or no activity when exposed to Ugi compounds. However, engineering the human versions of TLR4 and MD2 to be expressed in mTLR4/MD2 deficient mice allowed for robust activity by Ugi compounds both in vitro and in vivo. These findings extend the range of compounds available for development as agonists of TLR4 and identify novel molecules which reverse the TLR4 triggering preference of MPL for mouse TLR4 over human TLR4. Such compounds may be amenable to formulation as more potent human-specific TLR4L-based adjuvants than typical MPL-based adjuvants.


Characterization of human respiratory syncytial virus (RSV) isolated from HIV-exposed-uninfected and HIV-unexposed infants in South Africa during 2015-2017.

  • Hui Liu‎ et al.
  • Influenza and other respiratory viruses‎
  • 2020‎

RSV is a leading cause of lower respiratory tract infection in infants. Monitoring RSV glycoprotein sequences is critical for understanding RSV epidemiology and viral antigenicity in the effort to develop anti-RSV prophylactics and therapeutics.


Chemically Defined, High-Density Insect Cell-Based Expression System for Scalable AAV Vector Production.

  • James H Kurasawa‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2020‎

The recombinant adeno-associated virus (AAV) vector is one of the most utilized viral vectors in gene therapy due to its robust, long-term in vivo transgene expression and low toxicity. One major hurdle for clinical AAV applications is large-scale manufacturing. In this regard, the baculovirus-based AAV production system is highly attractive due to its scalability and predictable biosafety. Here, we describe a simple method to improve the baculovirus-based AAV production using the ExpiSf Baculovirus Expression System with a chemically defined medium for suspension culture of high-density ExpiSf9 cells. Baculovirus-infected ExpiSf9 cells produced up to 5 × 1011 genome copies of highly purified AAV vectors per 1 mL of suspension culture, which is up to a 19-fold higher yield than the titers we obtained from the conventional Sf9 cell-based system. When mice were administered the same dose of AAV vectors, we saw comparable transduction efficiency and biodistributions between the vectors made in ExpiSf9 and Sf9 cells. Thus, the ExpiSf Baculovirus Expression System would support facile and scalable AAV manufacturing amenable for preclinical and clinical applications.


An Interleukin-23-Interleukin-22 Axis Regulates Intestinal Microbial Homeostasis to Protect from Diet-Induced Atherosclerosis.

  • Aliia R Fatkhullina‎ et al.
  • Immunity‎
  • 2018‎

Although commensal flora is involved in the regulation of immunity, the interplay between cytokine signaling and microbiota in atherosclerosis remains unknown. We found that interleukin (IL)-23 and its downstream target IL-22 restricted atherosclerosis by repressing pro-atherogenic microbiota. Inactivation of IL-23-IL-22 signaling led to deterioration of the intestinal barrier, dysbiosis, and expansion of pathogenic bacteria with distinct biosynthetic and metabolic properties, causing systemic increase in pro-atherogenic metabolites such as lipopolysaccharide (LPS) and trimethylamine N-oxide (TMAO). Augmented disease in the absence of the IL-23-IL-22 pathway was mediated in part by pro-atherogenic osteopontin, controlled by microbial metabolites. Microbiota transfer from IL-23-deficient mice accelerated atherosclerosis, whereas microbial depletion or IL-22 supplementation reduced inflammation and ameliorated disease. Our work uncovers the IL-23-IL-22 signaling as a regulator of atherosclerosis that restrains expansion of pro-atherogenic microbiota and argues for informed use of cytokine blockers to avoid cardiovascular side effects driven by microbiota and inflammation.


Aerococcus urinae and Globicatella sanguinis Persist in Polymicrobial Urethral Catheter Biofilms Examined in Longitudinal Profiles at the Proteomic Level.

  • Yanbao Yu‎ et al.
  • Biochemistry insights‎
  • 2019‎

Aerococcus urinae (Au) and Globicatella sanguinis (Gs) are gram-positive bacteria belonging to the family Aerococcaceae and colonize the human immunocompromised and catheterized urinary tract. We identified both pathogens in polymicrobial urethral catheter biofilms (CBs) with a combination of 16S rDNA sequencing, proteomic analyses, and microbial cultures. Longitudinal sampling of biofilms from serially replaced catheters revealed that each species persisted in the urinary tract of a patient in cohabitation with 1 or more gram-negative uropathogens. The Gs and Au proteomes revealed active glycolytic, heterolactic fermentation, and peptide catabolic energy metabolism pathways in an anaerobic milieu. A few phosphotransferase system (PTS)-based sugar uptake and oligopeptide ABC transport systems were highly expressed, indicating adaptations to the supply of nutrients in urine and from exfoliating squamous epithelial and urothelial cells. Differences in the Au vs Gs metabolisms pertained to citrate lyase and utilization and storage of glycogen (evident only in Gs proteomes) and to the enzyme Xfp that degrades d-xylulose-5'-phosphate and the biosynthetic pathways for 2 protein cofactors, pyridoxal 6'-phosphate and 4'-phosphopantothenate (expressed only in Au proteomes). A predicted ZnuA-like transition metal ion uptake system was identified for Gs while Au expressed 2 LPXTG-anchored surface proteins, one of which had a predicted pilin D adhesion motif. While these proteins may contribute to fitness and virulence in the human host, it cannot be ruled out that Au and Gs fill a niche in polymicrobial biofilms without being the direct cause of injury in urothelial tissues.


FAM3D is essential for colon homeostasis and host defense against inflammation associated carcinogenesis.

  • Weiwei Liang‎ et al.
  • Nature communications‎
  • 2020‎

The physiological homeostasis of gut mucosal barrier is maintained by both genetic and environmental factors and its impairment leads to pathogenesis such as inflammatory bowel disease. A cytokine like molecule, FAM3D (mouse Fam3D), is highly expressed in mouse gastrointestinal tract. Here, we demonstrate that deficiency in Fam3D is associated with impaired integrity of colonic mucosa, increased epithelial hyper-proliferation, reduced anti-microbial peptide production and increased sensitivity to chemically induced colitis associated with high incidence of cancer. Pretreatment of Fam3D-/- mice with antibiotics significantly reduces the severity of chemically induced colitis and wild type (WT) mice co-housed with Fam3D-/- mice phenocopy Fam3D-deficiency showing increased sensitivity to colitis and skewed composition of fecal microbiota. An initial equilibrium of microbiota in cohoused WT and Fam3D-/- mice is followed by an increasing divergence of the bacterial composition after separation. These results demonstrate the essential role of Fam3D in colon homeostasis, protection against inflammation associated cancer and normal microbiota composition.


Associations of pathogen-specific and host-specific characteristics with disease outcome in patients with Staphylococcus aureus bacteremic pneumonia.

  • Batu K Sharma-Kuinkel‎ et al.
  • Clinical & translational immunology‎
  • 2019‎

To understand the relationships of Staphylococcus aureus (SA) bacteremic pneumonia (SABP) outcome with patient-specific and SA-specific variables.


A Prime/Boost Vaccine Regimen Alters the Rectal Microbiome and Impacts Immune Responses and Viremia Control Post-Simian Immunodeficiency Virus Infection in Male and Female Rhesus Macaques.

  • Thomas Musich‎ et al.
  • Journal of virology‎
  • 2020‎

An efficacious human immunodeficiency virus (HIV) vaccine will likely require induction of both mucosal and systemic immune responses. We compared the immunogenicity and protective efficacy of two mucosal/systemic vaccine regimens and investigated their effects on the rectal microbiome. Rhesus macaques were primed twice mucosally with replication-competent adenovirus type 5 host range mutant (Ad5hr)-simian immunodeficiency virus (SIV) recombinants and boosted twice intramuscularly with ALVAC-SIV recombinant plus SIV gp120 protein or with DNA for SIV genes and rhesus interleukin-12 plus SIV gp120 protein. Controls received empty Ad5hr vector and alum adjuvant only. Both regimens elicited strong, comparable mucosal and systemic cellular and humoral immunity. Prevaccination rectal microbiomes of males and females differed and significantly changed over the course of immunization, most strongly in females after Ad5hr immunizations. Following repeated low-dose intrarectal SIV challenges, both vaccine groups exhibited modestly but significantly reduced acute viremia. Male and female controls exhibited similar acute viral loads; however, vaccinated females, but not males, exhibited lower levels of acute viremia, compared to same-sex controls. Few differences in adaptive immune responses were observed between the sexes. Striking differences in correlations of the rectal microbiome of males and females with acute viremia and immune responses associated with protection were seen and point to effects of the microbiome on vaccine-induced immunity and viremia control. Our study clearly demonstrates direct effects of a mucosal SIV vaccine regimen on the rectal microbiome and validates our previously reported SIV vaccine-induced sex bias. Sex and the microbiome are critical factors that should not be overlooked in vaccine design and evaluation.IMPORTANCE Differences in HIV pathogenesis between males and females, including immunity postinfection, have been well documented, as have steroid hormone effects on the microbiome, which is known to influence mucosal immune responses. Few studies have applied this knowledge to vaccine trials. We investigated two SIV vaccine regimens combining mucosal priming immunizations and systemic protein boosting. We again report a vaccine-induced sex bias, with female rhesus macaques but not males displaying significantly reduced acute viremia. The vaccine regimens, especially the mucosal primes, significantly altered the rectal microbiome. The greatest effects were in females. Striking differences between female and male macaques in correlations of prevalent rectal bacteria with viral loads and potentially protective immune responses were observed. Effects of the microbiome on vaccine-induced immunity and viremia control require further study by microbiome transfer. However, the findings presented highlight the critical importance of considering effects of sex and the microbiome in vaccine design and evaluation.


Emergence of new antigenic epitopes in the glycoproteins of human respiratory syncytial virus collected from a US surveillance study, 2015-17.

  • Bin Lu‎ et al.
  • Scientific reports‎
  • 2019‎

Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infection in infants and elderly. To understand the evolution of neutralizing epitopes on the RSV glycoprotein (G) and fusion (F) proteins, we conducted a multi-year surveillance program (OUTSMART-RSV) in the US. Analysis of 1,146 RSV samples from 2015-2017 revealed a slight shift in prevalence from RSV A (58.7%) to B (53.7%) between the two seasons. RSV B was more prevalent in elderly (52.9% and 73.4%). Approximately 1% of the samples contained both RSV A and B viruses. All RSV A isolates were ON1 and almost all the B isolates were BA9 genotypes. Compared with the 2013 reference sequences, changes at the F antigenic sites of RSV B were greater than RSV A, which mainly occurred at antigenic sites V (L172Q/S173L at 99.6%), Ø (I206M/Q209K at 18.6%) and IV (E463D at 7%) of RSV B F. Sequence diversities in the G protein second hypervariable region were observed in the duplicated regions for RSV A and B, and at the G stop codon resulting in extension of 7 amino acids (22.1%) for RSV B in 2016-17. Thus, RSV surface glycoproteins are continuously evolving, and continued surveillance is important for the clinical evaluation of immunoprophylactic products.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: