2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 93 papers

Identifying amyloid pathology-related cerebrospinal fluid biomarkers for Alzheimer's disease in a multicohort study.

  • Yuk Yee Leung‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2015‎

The dynamic range of cerebrospinal fluid (CSF) amyloid β (Aβ1-42) measurement does not parallel to cognitive changes in Alzheimer's disease (AD) and cognitively normal (CN) subjects across different studies. Therefore, identifying novel proteins to characterize symptomatic AD samples is important.


Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis.

  • Sebum Lee‎ et al.
  • Neuron‎
  • 2016‎

Persistent accumulation of misfolded proteins causes endoplasmic reticulum (ER) stress, a prominent feature in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here we report the identification of homeodomain interacting protein kinase 2 (HIPK2) as the essential link that promotes ER-stress-induced cell death via the IRE1α-ASK1-JNK pathway. ER stress, induced by tunicamycin or SOD1(G93A), activates HIPK2 by phosphorylating highly conserved serine and threonine residues (S359/T360) within the activation loop of the HIPK2 kinase domain. In SOD1(G93A) mice, loss of HIPK2 delays disease onset, reduces cell death in spinal motor neurons, mitigates glial pathology, and improves survival. Remarkably, HIPK2 activation positively correlates with TDP-43 proteinopathy in NEFH-tTA/tetO-hTDP-43ΔNLS mice, sporadic ALS and C9ORF72 ALS, and blocking HIPK2 kinase activity protects motor neurons from TDP-43 cytotoxicity. These results reveal a previously unrecognized role of HIPK2 activation in ER-stress-mediated neurodegeneration and its potential role as a biomarker and therapeutic target for ALS. VIDEO ABSTRACT.


Variants associated with Gaucher disease in multiple system atrophy.

  • Jun Mitsui‎ et al.
  • Annals of clinical and translational neurology‎
  • 2015‎

Glucocerebrosidase gene (GBA) variants that cause Gaucher disease are associated with Parkinson disease (PD) and dementia with Lewy bodies (DLB). To investigate the role of GBA variants in multiple system atrophy (MSA), we analyzed GBA variants in a large case-control series.


Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo.

  • Sílvia Porta‎ et al.
  • Nature communications‎
  • 2018‎

The stereotypical distribution of TAR DNA-binding 43 protein (TDP-43) aggregates in frontotemporal lobar degeneration (FTLD-TDP) suggests that pathological TDP-43 spreads throughout the brain via cell-to-cell transmission and correlates with disease progression, but no in vivo experimental data support this hypothesis. We first develop a doxycycline-inducible cell line expressing GFP-tagged cytoplasmic TDP-43 protein (iGFP-NLSm) as a cell-based system to screen and identify seeding activity of human brain-derived pathological TDP-43 isolated from sporadic FTLD-TDP and familial cases with Granulin (FTLD-TDP-GRN) or C9orf72 repeat expansion mutations (FTLD-TDP-C9+). We demonstrate that intracerebral injections of biologically active pathogenic FTLD-TDP seeds into transgenic mice expressing cytoplasmic human TDP-43 (lines CamKIIa-hTDP-43NLSm, rNLS8, and CamKIIa-208) and non-transgenic mice led to the induction of de-novo TDP-43 pathology. Moreover, TDP-43 pathology progressively spreads throughout the brain in a time-dependent manner via the neuroanatomic connectome. Our study suggests that the progression of FTLD-TDP reflects the templated cell-to-cell transneuronal spread of pathological TDP-43.


Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies.

  • Amit Berson‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

RNA-binding proteins (RBPs) are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the underlying disease mechanisms remain unclear. In an unbiased screen in Drosophila for RBPs that genetically interact with TDP-43, we found that downregulation of the mRNA export factor Ref1 (fly orthologue to human ALYREF) mitigated TDP-43 induced toxicity. Further, Ref1 depletion also reduced toxicity caused by expression of the C9orf72 GGGGCC repeat expansion. Ref1 knockdown lowered the mRNA levels for these related disease genes and reduced the encoded proteins with no effect on a wild-type Tau disease transgene or a control transgene. Interestingly, expression of TDP-43 or the GGGGCC repeat expansion increased endogenous Ref1 mRNA levels in the fly brain. Further, the human orthologue ALYREF was upregulated by immunohistochemistry in ALS motor neurons, with the strongest upregulation occurring in ALS cases harboring the GGGGCC expansion in C9orf72. These data support ALYREF as a contributor to ALS/FTD and highlight its downregulation as a potential therapeutic target that may affect co-existing disease etiologies.


Longitudinal structural gray matter and white matter MRI changes in presymptomatic progranulin mutation carriers.

  • Christopher A Olm‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

Mutations in the progranulin (GRN) gene are a major source of inherited frontotemporal degeneration (FTD) spectrum disorders associated with TDP-43 proteinopathy. We use structural MRI to identify regions of baseline differences and longitudinal changes in gray matter (GM) and white matter (WM) in presymptomatic GRN mutation carriers (pGRN+) compared to young controls (yCTL).


Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS.

  • Andrew C Elden‎ et al.
  • Nature‎
  • 2010‎

The causes of amyotrophic lateral sclerosis (ALS), a devastating human neurodegenerative disease, are poorly understood, although the protein TDP-43 has been suggested to have a critical role in disease pathogenesis. Here we show that ataxin 2 (ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models. ATXN2 and TDP-43 associate in a complex that depends on RNA. In spinal cord neurons of ALS patients, ATXN2 is abnormally localized; likewise, TDP-43 shows mislocalization in spinocerebellar ataxia type 2. To assess the involvement of ATXN2 in ALS, we analysed the length of the polyQ repeat in the ATXN2 gene in 915 ALS patients. We found that intermediate-length polyQ expansions (27-33 glutamines) in ATXN2 were significantly associated with ALS. These data establish ATXN2 as a relatively common ALS susceptibility gene. Furthermore, these findings indicate that the TDP-43-ATXN2 interaction may be a promising target for therapeutic intervention in ALS and other TDP-43 proteinopathies.


A90V TDP-43 variant results in the aberrant localization of TDP-43 in vitro.

  • Matthew J Winton‎ et al.
  • FEBS letters‎
  • 2008‎

TAR DNA-binding protein-43 (TDP-43) is a highly conserved, ubiquitously expressed nuclear protein that was recently identified as the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Pathogenic TDP-43 gene (TARDBP) mutations have been identified in familial ALS kindreds, and here we report a TARDBP variant (A90V) in a FTLD/ALS patient with a family history of dementia. Significantly, A90V is located between the bipartite nuclear localization signal sequence of TDP-43 and the in vitro expression of TDP-43-A90V led to its sequestration with endogenous TDP-43 as insoluble cytoplasmic aggregates. Thus, A90V may be a genetic risk factor for FTLD/ALS because it predisposes nuclear TDP-43 to redistribute to the cytoplasm and form pathological aggregates.


Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies.

  • Chao Peng‎ et al.
  • Nature‎
  • 2018‎

In Lewy body diseases-including Parkinson's disease, without or with dementia, dementia with Lewy bodies, and Alzheimer's disease with Lewy body co-pathology 1 -α-synuclein (α-Syn) aggregates in neurons as Lewy bodies and Lewy neurites 2 . By contrast, in multiple system atrophy α-Syn accumulates mainly in oligodendrocytes as glial cytoplasmic inclusions (GCIs) 3 . Here we report that pathological α-Syn in GCIs and Lewy bodies (GCI-α-Syn and LB-α-Syn, respectively) is conformationally and biologically distinct. GCI-α-Syn forms structures that are more compact and it is about 1,000-fold more potent than LB-α-Syn in seeding α-Syn aggregation, consistent with the highly aggressive nature of multiple system atrophy. GCI-α-Syn and LB-α-Syn show no cell-type preference in seeding α-Syn pathology, which raises the question of why they demonstrate different cell-type distributions in Lewy body disease versus multiple system atrophy. We found that oligodendrocytes but not neurons transform misfolded α-Syn into a GCI-like strain, highlighting the fact that distinct α-Syn strains are generated by different intracellular milieus. Moreover, GCI-α-Syn maintains its high seeding activity when propagated in neurons. Thus, α-Syn strains are determined by both misfolded seeds and intracellular environments.


Progression of motor neuron disease is accelerated and the ability to recover is compromised with advanced age in rNLS8 mice.

  • Krista J Spiller‎ et al.
  • Acta neuropathologica communications‎
  • 2016‎

In order to treat progressive paralysis in ALS patients, it is critical to develop a mouse that closely models human ALS in both pathology and also in the timing of these events. We have recently generated new TDP-43 bigenic mice (called rNLS8) with doxycycline (Dox)-suppressible expression of human TDP-43 (hTDP-43) harboring a defective nuclear localization signal (hTDP-43∆NLS) under the control of the NEFH promoter. Our previous studies characterized the pathology and disease course in young rNLS8 mice following induction of neuronal hTDP-43ΔNLS. We now seek to examine if the order and timing of pathologic events are changed in aged mice. We found that the expression of hTDP-43∆NLS in 12+ month old mice did not accelerate the appearance of neuromuscular abnormalities or motor neuron (MN) death in the lumbar spinal cord (SC), though disease progression was accelerated. However, following suppression of the transgene, important differences between young and aged rNLS8 mice emerged in functional motor recovery. We found that recovery was incomplete in aged mice relative to their younger treatment matched counterparts based on gross behavioral measures and physiological recordings from the animals' gastrocnemius (GC) muscles, despite muscle reinnervation by surviving MNs. This is likely because the reinnervation most often only resulted in partial nerve and endplate connections and the muscle's junctional folds were much more disorganized in aged rNLS8 mice. We believe that these studies will be an important basis for the future design and evaluation of therapies designed to slow denervation and promote re-innervation in adult ALS patients.


Reduction of matrix metalloproteinase 9 (MMP-9) protects motor neurons from TDP-43-triggered death in rNLS8 mice.

  • Krista J Spiller‎ et al.
  • Neurobiology of disease‎
  • 2019‎

Therapeutic strategies are needed for the treatment of amyotrophic lateral sclerosis (ALS). One potential target is matrix metalloproteinase-9 (MMP-9), which is expressed only by fast motor neurons (MNs) that are selectively vulnerable to various ALS-relevant triggers. Previous studies have shown that reduction of MMP-9 function delayed motor dysfunction in a mouse model of familial ALS. However, given that the majority of ALS cases are sporadic, we propose preclinical testing in a mouse model which may be more clinically translatable: rNLS8 mice. In rNLS8 mice, neurodegeneration is triggered by the major pathological hallmark of ALS, TDP-43 mislocalization and aggregation. MMP-9 was targeted in 3 different ways in rNLS8 mice: by AAV9-mediated knockdown, using antisense oligonucleotide (ASO) technology, and by genetic modification. All 3 strategies preserved the motor unit during disease, as measured by MN counts, tibialis anterior (TA) muscle innervation, and physiological recordings from muscle. However, the strategies that reduced MMP-9 beyond the motor unit lead to premature deaths in a subset of rNLS8 mice. Therefore, selective targeting of MMP-9 in MNs could be beneficial in ALS, but side effects outside of the motor circuit may limit the most commonly used clinical targeting strategies.


Genetic risk of Parkinson disease and progression:: An analysis of 13 longitudinal cohorts.

  • Hirotaka Iwaki‎ et al.
  • Neurology. Genetics‎
  • 2019‎

To determine if any association between previously identified alleles that confer risk for Parkinson disease and variables measuring disease progression.


Poly (ADP-ribose) Interacts With Phosphorylated α-Synuclein in Post Mortem PD Samples.

  • Laura N Puentes‎ et al.
  • Frontiers in aging neuroscience‎
  • 2021‎

Poly (ADP-ribose) (PAR) is a negatively charged polymer that is biosynthesized by Poly (ADP-ribose) Polymerase-1 (PARP-1) and regulates various cellular processes. Alpha-synuclein (αSyn) is an intrinsically disordered protein (IDP) that has been directly implicated with driving the onset and progression of Parkinson's disease (PD). The mechanisms by which α-synuclein (αSyn) elicits its neurotoxic effects remain unclear, though it is well established that the main components of Lewy bodies (LBs) and Lewy neurites (LNs) in PD patients are aggregated hyperphosphorylated (S129) forms of αSyn (pαSyn). In the present study, we used immunofluorescence-based assays to explore if PARP-1 enzymatic product (PAR) promotes the aberrant cytoplasmic accumulation of pαSyn. We also performed quantitative measurements using in situ proximity ligation assays (PLA) on a transgenic murine model of α-synucleinopathy (M83-SNCA∗A53T) and post mortem PD/PDD patient samples to characterize PAR-pαSyn interactions. Additionally, we used bioinformatic approaches and site-directed mutagenesis to identify PAR-binding regions on αSyn. In summary, our studies show that PAR-pαSyn interactions are predominantly observed in PD-relevant transgenic murine models of αSyn pathology and post mortem PD/PDD patient samples. Moreover, we confirm that the interactions between PAR and αSyn involve electrostatic forces between negatively charged PAR and lysine residues on the N-terminal region of αSyn.


Transmission of tauopathy strains is independent of their isoform composition.

  • Zhuohao He‎ et al.
  • Nature communications‎
  • 2020‎

The deposition of pathological tau is a common feature in several neurodegenerative tauopathies. Although equal ratios of tau isoforms with 3 (3R) and 4 (4R) microtubule-binding repeats are expressed in the adult human brain, the pathological tau from different tauopathies have distinct isoform compositions and cell type specificities. The underlying mechanisms of tauopathies are unknown, partially due to the lack of proper models. Here, we generate a new transgenic mouse line expressing equal ratios of 3R and 4R human tau isoforms (6hTau mice). Intracerebral injections of distinct human tauopathy brain-derived tau strains into 6hTau mice recapitulate the deposition of pathological tau with distinct tau isoform compositions and cell type specificities as in human tauopathies. Moreover, through in vivo propagation of these tau strains among different mouse lines, we demonstrate that the transmission of distinct tau strains is independent of strain isoform compositions, but instead intrinsic to unique pathological conformations.


Preemptive Treatment With Elbasvir and Grazoprevir for Hepatitis C-Viremic Donor to Uninfected Recipient Kidney Transplantation.

  • Meghan E Sise‎ et al.
  • Kidney international reports‎
  • 2020‎

Long wait times for kidney transplants have prompted investigation into strategies to decrease the discarding of potentially viable organs. Recent reports suggest that kidneys from hepatitis C virus (HCV)-infected donors may be transplanted into HCV-naive donors followed by direct-acting antiviral therapy.


Identification of small molecules and related targets that modulate tau pathology in a seeded primary neuron model.

  • Garrett S Gibbons‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Alzheimer's disease (AD) is characterized by the presence of tau protein inclusions and amyloid beta (Aβ) plaques in the brain, with Aβ peptides generated by cleavage of the amyloid precursor protein (APP) by BACE1 and γ-secretase. We previously described a primary rat neuron assay in which tau inclusions form from endogenous rat tau after seeding cells with insoluble tau isolated from the human AD brain. Here, we used this assay to screen an annotated library of ∼8700 biologically active small molecules for their ability to reduce immuno-stained neuronal tau inclusions. Compounds causing ≥30% inhibition of tau aggregates with <25% loss of DAPI-positive cell nuclei underwent further confirmation testing and assessment of neurotoxicity, and non-neurotoxic hits were subsequently analyzed for inhibitory activity in an orthogonal ELISA that quantified multimeric rat tau species. Of the 173 compounds meeting all criteria, a subset of 55 inhibitors underwent concentration-response testing and 46 elicited a concentration-dependent reduction of neuronal tau inclusions that were distinct from measures of toxicity. Among the confirmed inhibitors of tau pathology were BACE1 inhibitors, several of which, along with γ-secretase inhibitors/modulators, caused a concentration-dependent lowering of neuronal tau inclusions and a reduction of insoluble tau by immunoblotting, although they did not decrease soluble phosphorylated tau species. In conclusion, we have identified a diverse set of small molecules and related targets that reduce neuronal tau inclusions. Notably, these include BACE1 and γ-secretase inhibitors, suggesting that a cleavage product from a shared substrate, such as APP, might affect tau pathology.


Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy.

  • Naomi Kouri‎ et al.
  • Nature communications‎
  • 2015‎

Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n=152) and 3,311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P=1.42 × 10(-12)), 8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472; P=3.41 × 10(-8)), and 2p22 at SOS1 (rs963731; P=1.76 × 10(-7)). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22; rs1768208; P=2.07 × 10(-7)) and MAPT H1c (17q21; rs242557; P=7.91 × 10(-6)). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein).


Topography of FUS pathology distinguishes late-onset BIBD from aFTLD-U.

  • Edward B Lee‎ et al.
  • Acta neuropathologica communications‎
  • 2013‎

Multiple neurodegenerative diseases are characterized by the abnormal accumulation of FUS protein including various subtypes of frontotemporal lobar degeneration with FUS inclusions (FTLD-FUS). These subtypes include atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (aFTLD-U), basophilic inclusion body disease (BIBD) and neuronal intermediate filament inclusion disease (NIFID). Despite considerable overlap, certain pathologic features including differences in inclusion morphology, the subcellular localization of inclusions, and the relative paucity of subcortical FUS pathology in aFTLD-U indicate that these three entities represent related but distinct diseases. In this study, we report the clinical and pathologic features of three cases of aFTLD-U and two cases of late-onset BIBD with an emphasis on the anatomic distribution of FUS inclusions.


Comparative survey of the topographical distribution of signature molecular lesions in major neurodegenerative diseases.

  • Steven E Arnold‎ et al.
  • The Journal of comparative neurology‎
  • 2013‎

An understanding of the anatomic distributions of major neurodegenerative disease lesions is important to appreciate the differential clinical profiles of these disorders and to serve as neuropathological standards for emerging molecular neuroimaging methods. To address these issues, here we present a comparative survey of the topographical distribution of the defining molecular neuropathological lesions among 10 neurodegenerative diseases from a large and uniformly assessed brain collection. Ratings of pathological severity in 16 brain regions from 671 cases with diverse neurodegenerative diseases are summarized and analyzed. These include: 1) amyloid-β and tau lesions in Alzheimer's disease; 2) tau lesions in three other tauopathies including Pick's disease, progressive supranuclear palsy and corticobasal degeneration; 3) α-synuclein inclusion ratings in four synucleinopathies including Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies, and multiple system atrophy; and 4) TDP-43 lesions in two TDP-43 proteinopathies, including frontotemporal lobar degeneration associated with TDP-43 and amyotrophic lateral sclerosis. The data presented graphically and topographically confirm and extend previous pathological anatomic descriptions and statistical comparisons highlight the lesion distributions that either overlap or distinguish the diseases in each molecular disease category.


Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models.

  • Hyung-Jun Kim‎ et al.
  • Nature genetics‎
  • 2014‎

Amyotrophic lateral sclerosis (ALS) is a fatal, late-onset neurodegenerative disease primarily affecting motor neurons. A unifying feature of many proteins associated with ALS, including TDP-43 and ataxin-2, is that they localize to stress granules. Unexpectedly, we found that genes that modulate stress granules are strong modifiers of TDP-43 toxicity in Saccharomyces cerevisiae and Drosophila melanogaster. eIF2α phosphorylation is upregulated by TDP-43 toxicity in flies, and TDP-43 interacts with a central stress granule component, polyA-binding protein (PABP). In human ALS spinal cord neurons, PABP accumulates abnormally, suggesting that prolonged stress granule dysfunction may contribute to pathogenesis. We investigated the efficacy of a small molecule inhibitor of eIF2α phosphorylation in ALS models. Treatment with this inhibitor mitigated TDP-43 toxicity in flies and mammalian neurons. These findings indicate that the dysfunction induced by prolonged stress granule formation might contribute directly to ALS and that compounds that mitigate this process may represent a novel therapeutic approach.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: