2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Intranasal administration of recombinant TRAIL down-regulates CXCL-1/KC in an ovalbumin-induced airway inflammation murine model.

  • Veronica Tisato‎ et al.
  • PloS one‎
  • 2014‎

Ovalbumin (OVA)-sensitized BALB/c mice were i.n. instilled with recombinant TNF-related apoptosis inducing ligand (TRAIL) 24 hours before OVA challenge. The total number of leukocytes and the levels of the chemokine CXCL-1/KC significantly increased in the bronchoalveolar lavage (BAL) fluids of allergic animals with respect to control littermates, but not in the BAL of mice i.n. pretreated with recombinant TRAIL before OVA challenge. In particular, TRAIL pretreatment significantly reduced the BAL percentage of both eosinophils and neutrophils. On the other hand, when TRAIL was administrated simultaneously to OVA challenge its effect on BAL infiltration was attenuated. Overall, the results show that the i.n. pretreatment with TRAIL down-modulated allergic airway inflammation.


Kinetic Profiles of Inflammatory Mediators in the Conjunctival Sac Fluid of Patients upon Photorefractive Keratectomy.

  • Veronica Tisato‎ et al.
  • Mediators of inflammation‎
  • 2015‎

Photorefractive keratectomy (PRK) represents a therapeutic option to remodel corneal stroma and to compensate refractive errors, which involves inflammatory and/or regenerative processes. In this context, the modulation of cytokines/chemokines in the conjunctival sac fluid and their role in the maintenance of the corneal microenvironment during the healing process upon refractive procedures has not been deeply investigated. In this study, serial samples of conjunctival sac fluid of patients (n = 25) undergoing PRK were harvested before and at different time points after surgery. The levels of 29 cytokines/chemokines/growth factors involved in inflammatory/immune processes were measured with a multiplex array system. The results have firstly highlighted the different pattern of cytokine expression between the microenvironment at the anterior surface of the eye and the systemic circulation. More importantly, the kinetic of modulation of cytokines/chemokines at the conjunctival level following PRK revealed that while the majority of cytokines/chemokines showed a significant decrease, MCP-1 emerged in light of its pronounced and significant increase soon after PRK and during the follow-up. This methodological approach has highlighted the role of MCP-1 in the healing process following PRK and has shown a potential for the identification of expression/modulation of soluble factors for biomarker profiling in ocular surface diseases.


The Active Metabolite of Warfarin (3'-Hydroxywarfarin) and Correlation with INR, Warfarin and Drug Weekly Dosage in Patients under Oral Anticoagulant Therapy: A Pharmacogenetics Study.

  • Donato Gemmati‎ et al.
  • PloS one‎
  • 2016‎

Warfarin oral anticoagulant therapy (OAT) requires regular and frequent drug adjustment monitored by INR. Interindividual variability, drug and diet interferences, and genetics (VKORC1 and CYP2C9) make the maintenance/reaching of stable INR a not so easy task. HPLC assessment of warfarin/enantiomers was suggested as a valid monitoring-tool along with INR, but definite results are still lacking. We evaluated possible correlations between INR, warfarin/3'-hydroxywarfarin, and drug weekly dosage aimed at searching novel alternatives to OAT monitoring. VKORC1/CYP2C9 pharmacogenetics investigation was performed to account for the known influence on warfarin homeostasis.


Maternal Haplotypes in DHFR Promoter and MTHFR Gene in Tuning Childhood Acute Lymphoblastic Leukemia Onset-Latency: Genetic/Epigenetic Mother/Child Dyad Study (GEMCDS).

  • Veronica Tisato‎ et al.
  • Genes‎
  • 2019‎

Childhood acute lymphoblastic leukemia (ALL) peaks around age 2-4, and in utero genetic epigenetic mother-fetus crosstalk might tune ALL onset during childhood life. Folate genes variably interact with vitamin status on ALL risk and prognosis. We investigated DHFR and MTHFR gene variants in 235 ALL children and their mothers to disclose their role in determining ALL onset age and survival. Pyrosequence of DHFR 19bp ins/del (rs70991108; W/D), MTHFR C677T (rs1801133; C>T), and MTHFR A1298C (rs1801131; A>C) was assessed in children and in 72% of mothers for dyad-analysis comparison. DHFR DD-children had delayed ALL onset compared to WW-children (7.5 ± 4.8 vs. 5.2 ± 3.7 years; P = 0.002) as well as MTHFR 1298 CC-children compared to AA-children (8.03 ± 4.8 vs. 5.78 ± 4.1 years; P = 0.006), and according to the strong linkage disequilibrium between MTHFR 677 T-allele and 1298C-allele, MTHFR TT-children showed early mean age of onset though not significant. Offspring of MTHFR 677 TT-mothers had earlier ALL onset compared to offspring of 677 CC-mothers (5.4 ± 3.3 vs. 7 ± 5.3 years; P = 0.017). DHFR/MTHFR 677 polymorphism combination influenced onset age by comparing DD/CC vs. WW/TT children (8.1 ± 5.7 vs. 4.7 ± 2.1 years; P = 0.017). Moreover, mother-child genotype combination gave 5.5-years delayed onset age in favor of DD-offspring of 677 CC-mothers vs. WW-offspring of 677 TT-mothers, and it was further confirmed including any D-carrier children and any 677 T-carrier mothers (P = 0.00052). Correction for multiple comparisons maintained statistical significance for DHFR ins/del and MTHFR A1298C polymorphisms. Unexpectedly, among the very-early onset group (<2.89 years; 25th), DD-genotype inversely clustered in children and mothers (4.8% vs. 23.8% respectively), and accordingly ALL offspring of homozygous DD-mothers had increased risk to have early-onset (adjusted OR (odds ratio) = 3.08; 1.1-8.6; P = 0.03). The opposite effect DHFR promoter variant has in tuning ALL onset-time depending on who is the carrier (i.e., mother or child) might suggest a parent-origin-effect of the D-allele or a two-faced epigenetic role driven by unbalanced folate isoform availability during the in-utero leukemogenesis responsible for the wide postnatal childhood ALL latency.


Crosstalk Between Adipokines and Paraoxonase 1: A New Potential Axis Linking Oxidative Stress and Inflammation.

  • Veronica Tisato‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2019‎

Paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-associated protein that endows its carrier with (lipo-)lactonase-dependent antioxidative features. Low levels of PON1 activity have been observed in association with obesity, a major risk factor for cardiovascular disease (CVD). Considering the well-recognized atheroprotective role of PON1, exogenous/endogenous factors that might modulate its levels/activity are raising great interest. Since adipokines represent a molecular link between obesity and CVD, we here explored the possible impact of these substances on PON1 activity/expression. The levels of interleukin (IL)-6, IL-8, tumor necrosis factor alpha, monocyte chemoattractant protein-1, hepatocyte growth factor, resistin, leptin, and adiponectin were measured along with arylesterase, paraoxonase, and lactonase activities of PON1 in 107 postmenopausal women. Moreover, the direct effect of resistin on PON1 expression was evaluated in vitro. Multivariate analysis revealed that only resistin was significantly and inversely correlated with PON1-lactonase activities (r = -0.346, p < 0.001) regardless of confounding factors such as age or HDL-cholesterol. It is worth noting that no statistical link was found between adipokine and arylesterase or paraoxonase, the two promiscuous activities of PON1. Notably, resistin down-regulated PON1 expression occurred in hepatocellular carcinoma cultures. Our study suggests that resistin might be a negative modulator of PON1 expression and anti-oxidative activity.


The γ-secretase inhibitors enhance the anti-leukemic activity of ibrutinib in B-CLL cells.

  • Paola Secchiero‎ et al.
  • Oncotarget‎
  • 2017‎

Ibrutinib blocks B-cell receptor signaling and interferes with leukemic cell-to-microenvironment interactions. Ibrutinib plays a key role in the management of B-CLL and is recommended for first line treatment of high-risk CLL patients with 17p deletion. Therefore, elucidating the factors governing sensitivity/resistance to Ibrutinib represents a relevant issue. For this purpose, in 3 B-CLL patient samples harboring functional TP53 mutations, the frequency of the mutated clones was monitored during in vivo Ibrutinib therapy, revealing a progressive decline of the frequency of TP53mut clones during 12 months of treatment. In parallel, the anti-leukemic activity of Ibrutinib was assessed in vitro on B-CLL patient cell cultures in combination with γ-secretase inhibitors (GSI). In the in vitro assays, the combination of Ibrutinib+GSI exhibited enhanced cytotoxicity on B-CLL cells also in the presence of stroma and it was coupled to the down-regulation of the stroma-activated NOTCH1 and c-MYC pathways. Moreover, the combined treatment was effective in reducing CXCR4 expression and functions. Therefore, the ability of GSI to enhance the Ibrutinib anti-leukemic activity in B-CLL cells, by down-regulating the NOTCH1 and c-MYC pathways, warrants further experimentation for its potential therapeutic applications.


The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial.

  • Sofia Straudi‎ et al.
  • Trials‎
  • 2017‎

Gait and mobility impairments affect the quality of life (QoL) of patients with progressive multiple sclerosis (MS). Robot-assisted gait training (RAGT) is an effective rehabilitative treatment but evidence of its superiority compared to other options is lacking. Furthermore, the response to rehabilitation is multidimensional, person-specific and possibly involves functional reorganization processes. The aims of this study are: (1) to test the effectiveness on gait speed, mobility, balance, fatigue and QoL of RAGT compared to conventional therapy (CT) in progressive MS and (2) to explore changes of clinical and circulating biomarkers of neural plasticity.


TRAIL, OPG, and TWEAK in kidney disease: biomarkers or therapeutic targets?

  • Stella Bernardi‎ et al.
  • Clinical science (London, England : 1979)‎
  • 2019‎

Ligands and receptors of the tumor necrosis factor (TNF) superfamily regulate immune responses and homeostatic functions with potential diagnostic and therapeutic implications. Kidney disease represents a global public health problem, whose prevalence is rising worldwide, due to the aging of the population and the increasing prevalence of diabetes, hypertension, obesity, and immune disorders. In addition, chronic kidney disease is an independent risk factor for the development of cardiovascular disease, which further increases kidney-related morbidity and mortality. Recently, it has been shown that some TNF superfamily members are actively implicated in renal pathophysiology. These members include TNF-related apoptosis-inducing ligand (TRAIL), its decoy receptor osteoprotegerin (OPG), and TNF-like weaker inducer of apoptosis (TWEAK). All of them have shown the ability to activate crucial pathways involved in kidney disease development and progression (e.g. canonical and non-canonical pathways of the transcription factor nuclear factor-kappa B), as well as the ability to regulate cell proliferation, differentiation, apoptosis, necrosis, inflammation, angiogenesis, and fibrosis with double-edged effects depending on the type and stage of kidney injury. Here we will review the actions of TRAIL, OPG, and TWEAK on diabetic and non-diabetic kidney disease, in order to provide insights into their full clinical potential as biomarkers and/or therapeutic options against kidney disease.


Cis-Segregation of c.1171C>T Stop Codon (p.R391*) in SERPINC1 Gene and c.1691G>A Transition (p.R506Q) in F5 Gene and Selected GWAS Multilocus Approach in Inherited Thrombophilia.

  • Donato Gemmati‎ et al.
  • Genes‎
  • 2021‎

Inherited thrombophilia (e.g., venous thromboembolism, VTE) is due to rare loss-of-function mutations in anticoagulant factors genes (i.e., SERPINC1, PROC, PROS1), common gain-of-function mutations in procoagulant factors genes (i.e., F5, F2), and acquired risk conditions. Genome Wide Association Studies (GWAS) recently recognized several genes associated with VTE though gene defects may unpredictably remain asymptomatic, so calculating the individual genetic predisposition is a challenging task. We investigated a large family with severe, recurrent, early-onset VTE in which two sisters experienced VTE during pregnancies characterized by a perinatal in-utero thrombosis in the newborn and a life-saving pregnancy-interruption because of massive VTE, respectively. A nonsense mutation (CGA > TGA) generating a premature stop-codon (c.1171C>T; p.R391*) in the exon 6 of SERPINC1 gene (1q25.1) causing Antithrombin (AT) deficiency and the common missense mutation (c.1691G>A; p.R506Q) in the exon 10 of F5 gene (1q24.2) (i.e., FV Leiden; rs6025) were coinherited in all the symptomatic members investigated suspecting a cis-segregation further confirmed by STR-linkage-analyses [i.e., SERPINC1 IVS5 (ATT)5-18, F5 IVS2 (AT)6-33 and F5 IVS11 (GT)12-16] and SERPINC1 intragenic variants (i.e., rs5878 and rs677). A multilocus investigation of blood-coagulation balance genes detected the coexistence of FV Leiden (rs6025) in trans with FV HR2-haplotype (p.H1299R; rs1800595) in the aborted fetus, and F11 rs2289252, F12 rs1801020, F13A1 rs5985, and KNG1 rs710446 in the newborn and other members. Common selected gene variants may strongly synergize with less common mutations tuning potential life-threatening conditions when combined with rare severest mutations. Merging classic and newly GWAS-identified gene markers in at risk families is mandatory for VTE risk estimation in the clinical practice, avoiding partial risk score evaluation in unrecognized at risk patients.


Upregulation of SOCS-1 by Nutlin-3 in acute myeloid leukemia cells but not in primary normal cells.

  • Veronica Tisato‎ et al.
  • Clinics (Sao Paulo, Brazil)‎
  • 2014‎

It has been shown that SOCS-1 plays an important role in the proper control of cytokine/growth factor responses and acts as a tumor suppressor in acute myeloid leukemias. Therefore, the objective of the present study was to evaluate the in vitro effect of treatment with Nutlin-3, a small molecule inhibitor of the MDM2/p53 interaction, on the expression of the suppressor of cytokine signaling 1 in primary acute myeloid leukemia cells and in myeloid cell lines with differential p53 status.


Gene-gene interactions among coding genes of iron-homeostasis proteins and APOE-alleles in cognitive impairment diseases.

  • Veronica Tisato‎ et al.
  • PloS one‎
  • 2018‎

Cognitive impairments of different aetiology share alterations in iron and lipid homeostasis with mutual relationships. Since iron and cholesterol accumulation impact on neurodegenerative disease, the associated gene variants are appealing candidate targets for risk and disease progression assessment. In this light, we explored the role of common single nucleotide polymorphisms (SNPs) in the main iron homeostasis genes and in the main lipoprotein transporter gene (APOE) in a cohort of 765 patients with dementia of different origin: Alzheimer's disease (AD) n = 276; vascular dementia (VaD), n = 255; mild cognitive impairment (MCI), n = 234; and in normal controls (n = 1086). In details, four genes of iron homeostasis (Hemochromatosis (HFE: C282Y, H63D), Ferroportin (FPN1: -8CG), Hepcidin (HAMP: -582AG), Transferrin (TF: P570S)), and the three major alleles of APOE (APOE2, APOE3, APOE4) were analyzed to explore causative interactions and synergies. In single analysis, HFE 282Y allele yielded a 3-fold risk reduction in the whole cohort of patients (P<0.0001), confirmed in AD and VaD, reaching a 5-fold risk reduction in MCI (P = 0.0019). The other iron SNPs slightly associated with risk reduction whereas APOE4 allele resulted in increased risk, reaching more than 7-fold increased risk in AD homozygotes (P = 0.001), confirmed to a lower extent in VaD and MCI (P = 0.038 and P = 0.013 respectively) as well as in the whole group (P<0.0001). Comparisons of Mini Mental State Examination (MMSE) among AD showed appreciable lowering in APOE4 carriers (P = 0.038), confirmed in the whole cohort of patients (P = 0.018). In interaction analysis, the HFE 282Y allele completely extinguished the APOE4 allele associated risk. Conversely, the coexistence in patients of a substantial number of iron SNPs accrued the APOE4 detrimental effect on MMSE. Overall, the analysis highlighted how a specific iron-allele burden, defined as different combinations of iron gene variants, might have different effects on cognitive impairment and might modulate the effects of established genetic risk factors such as APOE4. Our results suggest that established genetic risk factors might be affected by specific genetic backgrounds, making patients differently suited to manage iron accumulation adding new genetic insights in neurodegeneration. The recently recognized interconnections between iron and lipids, suggest that these pathways might share more than expected. We therefore extended to additional iron gene variants the newly proposed influencing mechanisms that HFE gene has on cholesterol metabolism. Our results have a strong translational potential promoting new pharmacogenetics studies on therapeutic target identification aimed at optimally tuning brain iron levels.


Rehabilitation Improves Mitochondrial Energetics in Progressive Multiple Sclerosis: The Significant Role of Robot-Assisted Gait Training and of the Personalized Intensity.

  • Fabio Manfredini‎ et al.
  • Diagnostics (Basel, Switzerland)‎
  • 2020‎

Abnormal levels of pyruvate and lactate were reported in multiple sclerosis (MS). We studied the response of markers of mitochondrial function to rehabilitation in relation to type, intensity and endurance performance in severely disabled MS patients. Forty-six progressive MS patients were randomized to receive 12 walking sessions of robot-assisted gait training (RAGT, n = 23) or conventional overground therapy (CT, n = 23). Ten healthy subjects were also studied. Blood samples were collected to determine lactate, pyruvate, and glutathione levels and lactate/pyruvate ratio pre-post rehabilitation. In vivo muscle metabolism and endurance walking capacity were assessed by resting muscle oxygen consumption (rmVO2) using near-infrared spectroscopy and by six-minute walking distance (6MWD), respectively. The levels of mitochondrial biomarkers and rmVO2, altered at baseline with respect to healthy subjects, improved after rehabilitation in the whole population. In the two groups, an enhanced response was observed after RAGT compared to CT for lactate (p = 0.012), glutathione (<0.001), lactate/pyruvate ratio (p = 0.08) and rmVO2 (p = 0.07). Metabolic biomarkers and 6MWD improvements were exclusively correlated with a training speed markedly below individual gait speed. In severely disabled MS patients, rehabilitation rebalanced altered serum metabolic and muscle parameters, with RAGT being more effective than CT. A determinable slow training speed was associated with better metabolic and functional recovery. Trial Registration: ClinicalTrials.gov NCT02421731.


TRAIL and Ceruloplasmin Inverse Correlation as a Representative Crosstalk between Inflammation and Oxidative Stress.

  • Veronica Tisato‎ et al.
  • Mediators of inflammation‎
  • 2018‎

"Oxinflammation" is a recently coined term that defines the deleterious crosstalk between inflammatory and redox systemic processes, which underlie several diseases. Oxinflammation could be latently responsible for the predisposition of certain healthy individuals to disease development. The oxinflammatory pathway has been recently suggested to play a crucial role in regulating the activity of TNF-related apoptosis-inducing ligand (TRAIL), a TNF superfamily member that can mediate multiple signals in physiological and pathological processes. Therefore, we investigated the associations between TRAIL and key players of vascular redox homeostasis.


Anti-Inflammatory and Cortical Responses after Transcranial Direct Current Stimulation in Disorders of Consciousness: An Exploratory Study.

  • Sofia Straudi‎ et al.
  • Journal of clinical medicine‎
  • 2023‎

Disorders of consciousness (DoC) due to severe traumatic brain injury (TBI) are associated with severe disability and an alteration of cortical activation, angiogenesis, and inflammation, which are crucial elements for behavioural recovery. This exploratory study aimed to evaluate anti-inflammatory and cortical responses after transcranial direct current stimulation (tDCS) in traumatic prolonged disorders of consciousness. Ten minimally conscious state (MCS) patients underwent ten sessions of anodal tDCS (five sessions/week, two weeks, 40 min/session) on the primary motor cortex bilaterally. Clinical evaluations were performed using the Coma Recovery Scale-Revised (CRS-R) pre- and post-treatment. In contrast, after single and multiple tDCS sessions, the haemodynamic cortical response was obtained with functional near-infrared spectroscopy (fNIRS). Moreover, angiogenesis (angiopoietin-2, BMP9, endoglin, HbEFG, HGF, IL8, Leptin, PLGF, VEGF-A, and VEGF-C) and inflammation (GM-CSF, IFNg, IP10, MCP1, and TNFα) circulating biomarkers were collected. A significant haemodynamic response was observed after a single tDCS session, with an increased activation from 4.4 (3.1-6.1) to 7.6 (2.9-15.7) a.u. (p = 0.035). After ten tDCS sessions, a significant reduction of angiopoietin-2, VEGF-C, and IP-10 was detected. Moreover, a correlation between behavioural (CRS-R), TNFα (r = 0.89; p = 0.007), and IP10 (r = 0.81; p = 0.014) variation was found. In conclusion, a single tDCS session can increase the cortical activation in MCS patients. Moreover, multiple tDCS sessions showed an anti-inflammatory effect related to behavioural improvement.


Inhibitory effect of natural anti-inflammatory compounds on cytokines released by chronic venous disease patient-derived endothelial cells.

  • Veronica Tisato‎ et al.
  • Mediators of inflammation‎
  • 2013‎

Large vein endothelium plays important roles in clinical diseases such as chronic venous disease (CVD) and thrombosis; thus to characterize CVD vein endothelial cells (VEC) has a strategic role in identifying specific therapeutic targets. On these bases we evaluated the effect of the natural anti-inflammatory compounds α-Lipoic acid and Ginkgoselect phytosome on cytokines/chemokines released by CVD patient-derived VEC. For this purpose, we characterized the levels of a panel of cytokines/chemokines (n = 31) in CVD patients' plasma compared to healthy controls and their release by VEC purified from the same patients, in unstimulated and TNF-α stimulated conditions. Among the cytokines/chemokines released by VEC, which recapitulated the systemic profile (IL-8, TNF-α, GM-CSF, INF- α2, G-CSF, MIP-1β, VEGF, EGF, Eotaxin, MCP-1, CXCL10, PDGF, and RANTES), we identified those targeted by ex vivo treatment with α-Lipoic acid and/or Ginkgoselect phytosome (GM-CSF, G-CSF, CXCL10, PDGF, and RANTES). Finally, by investigating the intracellular pathways involved in promoting the VEC release of cytokines/chemokines, which are targeted by natural anti-inflammatory compounds, we documented that αLipoic acid significantly counteracted TNF-α-induced NF-κB and p38/MAPK activation while the effects of Ginkgo biloba appeared to be predominantly mediated by Akt. Our data provide new insights into the molecular mechanisms of CVD pathogenesis, highlighting new potential therapeutic targets.


Endothelial PDGF-BB produced ex vivo correlates with relevant hemodynamic parameters in patients affected by chronic venous disease.

  • Veronica Tisato‎ et al.
  • Cytokine‎
  • 2013‎

Surgical specimens of vein were obtained from the tertiary venous network and/or saphenous vein from patients (n=20) affected by chronic venous disease (CVD). Into the venous segments, which subsequently were surgically ablated, the following hemodynamic parameters were assessed by echo-color-doppler (ECD): peak systolic velocity, end diastolic velocity, whose combination allowed the calculation of the resistance index (RI) and the reflux time (RT). Highly purified venous endothelial cell (VEC) cultures derived from venous segments of these CVD patients were then characterized for the profile of cytokines and chemokines released in the culture supernatants. Among the 27 cytokines and chemokines examined, we found a positive and significant correlation (R=0.5; p=0.03) only between the spontaneous release of PDGF-BB by VEC cultures and the RT values of the patients from which the VEC were isolates. In addition, the release of PDGF-BB in the VEC culture supernatants was significantly (p<0.01) increased upon in vitro treatment with recombinant TNF-α. By using pharmacological inhibitors, specific for the main pathways, NF-kB, ERK1/2 and p38 MAPK, activated by exposure of endothelial cells to TNF-α, we found that only NF-kB appeared to be significantly involved in mediating the PDGF-BB induction by TNF-α. Of interest, the release of PDGF-BB in response to the in vitro inflammatory stimulation, maintained a positive and significant correlation with RT (R=0.6; p=0.01), while showing a negative correlation with RI (R=-0.5; p=0.03). The potential implications of our findings for the pathophysiology of CVD are discussed.


Overcoming of Microenvironment Protection on Primary Chronic Lymphocytic Leukemia Cells after Treatment with BTK and MDM2 Pharmacological Inhibitors.

  • Erika Rimondi‎ et al.
  • Current oncology (Toronto, Ont.)‎
  • 2021‎

In B-chronic lymphocytic leukemia (B-CLL), the interaction between leukemic cells and the microenvironment promotes tumor cell survival. The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib is one of the first-in-class molecules for the treatment of B-CLL patients; however, the emerging mechanisms of resistance to ibrutinib call for new therapeutic strategies. The purpose of the current study was to investigate the ability of ibrutinib plus the MDM2-inhibitor nutlin-3 to counteract the tumor microenvironment protective effect. We observed that primary B-CLL cells cultivated in microenvironment mimicking conditions were protected from apoptosis by the up-regulation of c-MYC and of p53. In the same setting, combined treatments with ibrutinib plus nutlin-3 led to significantly higher levels of apoptosis compared to the single treatments, counteracting the c-MYC up-regulation. Moreover, the combination induced high p53 levels and a significant dissipation of the mitochondrial membrane potential, together with BAX cleavage in the more active p18 form and phospho-BAD down-regulation, that are key components of the mitochondrial apoptotic pathway, enhancing the apoptosis level. Our findings propose a new therapeutic strategy to overcome the tumor microenvironment protection involved in B-CLL resistance to drugs, with possible clinical implications also for other hematologic and solid tumors for which ibrutinib is considered a therapeutic option.


MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer.

  • Veronica Tisato‎ et al.
  • Journal of hematology & oncology‎
  • 2017‎

The two murine double minute (MDM) family members MDM2 and MDMX are at the center of an intense clinical assessment as molecular target for the management of cancer. Indeed, the two proteins act as regulators of P53, a well-known key controller of the cell cycle regulation and cell proliferation that, when altered, plays a direct role on cancer development and progression. Several evidence demonstrated that functional aberrations of P53 in tumors are in most cases the consequence of alterations on the MDM2 and MDMX regulatory proteins, in particular in patients with hematological malignancies where TP53 shows a relatively low frequency of mutation while MDM2 and MDMX are frequently found amplified/overexpressed. The pharmacological targeting of these two P53-regulators in order to restore or increase P53 expression and activity represents therefore a strategy for cancer therapy. From the discovery of the Nutlins in 2004, several compounds have been developed and reported with the ability of targeting the P53-MDM2/X axis by inhibiting MDM2 and/or MDMX. From natural compounds up to small molecules and stapled peptides, these MDM2/X pharmacological inhibitors have been extensively studied, revealing different biological features and different rate of efficacy when tested in in vitro and in vivo experimental tumor models. The data/evidence coming from the preclinical experimentation have allowed the identification of the most promising molecules and the setting of clinical studies for their evaluation as monotherapy or in therapeutic combination with conventional chemotherapy or with innovative therapeutic protocols in different tumor settings. Preliminary results have been recently published reporting data about safety, tolerability, potential side effects, and efficacy of such therapeutic approaches. In this light, the aim of this review is to give an updated overview about the state of the art of the clinical evaluation of MDM2/X inhibitor compounds with a special attention to hematological malignancies and to the potential for the management of pediatric cancers.


Inherited genetic predispositions in F13A1 and F13B genes predict abdominal adhesion formation: identification of gender prognostic indicators.

  • Donato Gemmati‎ et al.
  • Scientific reports‎
  • 2018‎

Abdominal adhesions (AA) account for the most common complication of peritoneal surgery with bowel obstruction being the severest problem in the absence of effective predicting biomarkers. Anti-AA-barriers or adhesiolysis did not completely prevent bowel obstruction, although there is evidence they might reduce related complications requiring reoperation. In addition, gender-related predispositions have not been adequately investigated. We explored the role of coagulation Factor XIII (F13A1 and F13B subunit-genes) in patients following laparotomy, mostly median/lower median incision line. Globally, 426 patients (54%,♀), were PCR-SNP-genotyped for FXIIIA V34L (rs5985), FXIIIA P564L (rs5982), FXIIIA Y204F (rs3024477) and FXIIIB H95R (rs6003). Patients' clinical phenotypes were: Group-A (n = 212), those who developed AA, and 55.2% of them developed bowel obstruction (subgroup-A1), the remaining were subgroup-A2; Group B (n = 214) were those who did not develop AA (subgroup-B1; 53.3%) or symptoms/complications (subgroup-B2). Among different laparotomy, colon surgery associated with AA at a major extent (OR = 5.1; 3.24-7.8; P < 0.0001) with different gender scores (♀OR = 5.33; 2.32-12.23; P < 0.0001 and ♂OR = 3.44; 1.58-7.49; P < 0.0001). Among SNPs, P564L (OR = 4.42; 1.45-13.4; P = 0.008) and Y204F (OR = 7.78; 1.62-37.3; P = 0.01) significantly predicted bowel obstruction and survival-analyses yielded interesting gender distinctions (♀HR = 5.28; 2.36-11.8; P = 0.00005; ♂HR = 2.22; 1.31-3.85; P = 0.0034). Active compounds preventing AA belong to the anticoagulant/fibrinolysis areas, suggesting them candidate investigation targets. We identified novel prognostic markers to predict AA/bowel obstruction giving insights to design novel therapeutic and gender prevention programs.


TRAIL/DR5 pathway promotes AKT phosphorylation, skeletal muscle differentiation, and glucose uptake.

  • Barbara Toffoli‎ et al.
  • Cell death & disease‎
  • 2021‎

TNF-related apoptosis-inducing ligand (TRAIL) is a protein that induces apoptosis in cancer cells but not in normal ones, where its effects remain to be fully understood. Previous studies have shown that in high-fat diet (HFD)-fed mice, TRAIL treatment reduced body weight gain, insulin resistance, and inflammation. TRAIL was also able to increase skeletal muscle free fatty acid oxidation. The aim of the present work was to evaluate TRAIL actions on skeletal muscle. Our in vitro data on C2C12 cells showed that TRAIL treatment significantly increased myogenin and MyHC and other hallmarks of myogenic differentiation, which were reduced by Dr5 (TRAIL receptor) silencing. In addition, TRAIL treatment significantly increased AKT phosphorylation, which was reduced by Dr5 silencing, as well as glucose uptake (alone and in combination with insulin). Our in vivo data showed that TRAIL increased myofiber size in HFD-fed mice as well as in db/db mice. This was associated with increased myogenin and PCG1α expression. In conclusion, TRAIL/DR5 pathway promotes AKT phosphorylation, skeletal muscle differentiation, and glucose uptake. These data shed light onto a pathway that might hold therapeutic potential not only for the metabolic disturbances but also for the muscle mass loss that are associated with diabetes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: