Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Consumer Product Chemicals in Indoor Dust: A Quantitative Meta-analysis of U.S. Studies.

  • Susanna D Mitro‎ et al.
  • Environmental science & technology‎
  • 2016‎

Indoor dust is a reservoir for commercial consumer product chemicals, including many compounds with known or suspected health effects. However, most dust exposure studies measure few chemicals in small samples. We systematically searched the U.S. indoor dust literature on phthalates, replacement flame retardants (RFRs), perfluoroalkyl substances (PFASs), synthetic fragrances, and environmental phenols and estimated pooled geometric means (GMs) and 95% confidence intervals for 45 chemicals measured in ≥3 data sets. In order to rank and contextualize these results, we used the pooled GMs to calculate residential intake from dust ingestion, inhalation, and dermal uptake from air, and then identified hazard traits from the Safer Consumer Products Candidate Chemical List. Our results indicate that U.S. indoor dust consistently contains chemicals from multiple classes. Phthalates occurred in the highest concentrations, followed by phenols, RFRs, fragrance, and PFASs. Several phthalates and RFRs had the highest residential intakes. We also found that many chemicals in dust share hazard traits such as reproductive and endocrine toxicity. We offer recommendations to maximize comparability of studies and advance indoor exposure science. This information is critical in shaping future exposure and health studies, especially related to cumulative exposures, and in providing evidence for intervention development and public policy.


p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells.

  • Kimberly M McDermott‎ et al.
  • PLoS biology‎
  • 2006‎

Aneuploidy, frequently observed in premalignant lesions, disrupts gene dosage and contributes to neoplastic progression. Theodor Boveri hypothesized nearly 100 years ago that aneuploidy was due to an increase in centrosome number (multipolar mitoses) and the resultant abnormal segregation of chromosomes. We performed immunocytochemistry, quantitative immunofluorescence, karyotypic analysis, and time-lapse microscopy on primary human diploid epithelial cells and fibroblasts to better understand the mechanism involved in the production of supernumerary centrosomes (more than two microtubule nucleating bodies) to directly demonstrate that the presence of supernumerary centrosomes in genomically intact cells generates aneuploid daughter cells. We show that loss of p16(INK4a) generates supernumerary centrosomes through centriole pair splitting. Generation of supernumerary centrosomes in human diploid epithelial cells was shown to nucleate multipolar spindles and directly drive production of aneuploid daughter cells as a result of unequal segregation of the genomic material during mitosis. Finally, we demonstrate that p16(INK4a) cooperates with p21 through regulation of cyclin-dependent kinase activity to prevent centriole pair splitting. Cells with loss of p16(INK4a) activity have been found in vivo in histologically normal mammary tissue from a substantial fraction of healthy, disease-free women. Demonstration of centrosome dysfunction in cells due to loss of p16(INK4a) suggests that, under the appropriate conditions, these cells can become aneuploid. Gain or loss of genomic material (aneuploidy) may provide the necessary proproliferation and antiapoptotic mechanisms needed for the earliest stages of tumorigenesis.


Floxin, a resource for genetically engineering mouse ESCs.

  • Veena Singla‎ et al.
  • Nature methods‎
  • 2010‎

We describe a method for the highly efficient and precise targeted modification of gene trap loci in mouse embryonic stem cells (ESCs). Through the Floxin method, gene trap mutations were reverted and new DNA sequences inserted using Cre recombinase and a shuttle vector, pFloxin. Floxin technology is applicable to the existing collection of 24,149 compatible gene trap cell lines, which should enable high-throughput modification of many genes in mouse ESCs.


Assessment of Methylene Chloride-Related Fatalities in the United States, 1980-2018.

  • Anh Hoang‎ et al.
  • JAMA internal medicine‎
  • 2021‎

Methylene chloride is a halogenated organic solvent widely used in paint strippers, cleaners, adhesives, and sealants. Despite label warnings and occupational standards, methylene chloride-related fatalities continue to occur in the United States.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: