Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 56 papers

SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes.

  • Paul A Gulig‎ et al.
  • BMC genomics‎
  • 2010‎

Vibrio vulnificus is the leading cause of reported death from consumption of seafood in the United States. Despite several decades of research on molecular pathogenesis, much remains to be learned about the mechanisms of virulence of this opportunistic bacterial pathogen. The two complete and annotated genomic DNA sequences of V. vulnificus belong to strains of clade 2, which is the predominant clade among clinical strains. Clade 2 strains generally possess higher virulence potential in animal models of disease compared with clade 1, which predominates among environmental strains. SOLiD sequencing of four V. vulnificus strains representing different clades (1 and 2) and biotypes (1 and 2) was used for comparative genomic analysis.


Predicting the minimal translation apparatus: lessons from the reductive evolution of mollicutes.

  • Henri Grosjean‎ et al.
  • PLoS genetics‎
  • 2014‎

Mollicutes is a class of parasitic bacteria that have evolved from a common Firmicutes ancestor mostly by massive genome reduction. With genomes under 1 Mbp in size, most Mollicutes species retain the capacity to replicate and grow autonomously. The major goal of this work was to identify the minimal set of proteins that can sustain ribosome biogenesis and translation of the genetic code in these bacteria. Using the experimentally validated genes from the model bacteria Escherichia coli and Bacillus subtilis as input, genes encoding proteins of the core translation machinery were predicted in 39 distinct Mollicutes species, 33 of which are culturable. The set of 260 input genes encodes proteins involved in ribosome biogenesis, tRNA maturation and aminoacylation, as well as proteins cofactors required for mRNA translation and RNA decay. A core set of 104 of these proteins is found in all species analyzed. Genes encoding proteins involved in post-translational modifications of ribosomal proteins and translation cofactors, post-transcriptional modifications of t+rRNA, in ribosome assembly and RNA degradation are the most frequently lost. As expected, genes coding for aminoacyl-tRNA synthetases, ribosomal proteins and initiation, elongation and termination factors are the most persistent (i.e. conserved in a majority of genomes). Enzymes introducing nucleotides modifications in the anticodon loop of tRNA, in helix 44 of 16S rRNA and in helices 69 and 80 of 23S rRNA, all essential for decoding and facilitating peptidyl transfer, are maintained in all species. Reconstruction of genome evolution in Mollicutes revealed that, beside many gene losses, occasional gains by horizontal gene transfer also occurred. This analysis not only showed that slightly different solutions for preserving a functional, albeit minimal, protein synthetizing machinery have emerged in these successive rounds of reductive evolution but also has broad implications in guiding the reconstruction of a minimal cell by synthetic biology approaches.


QueF-Like, a Non-Homologous Archaeosine Synthase from the Crenarchaeota.

  • Adriana Bon Ramos‎ et al.
  • Biomolecules‎
  • 2017‎

Archaeosine (G⁺) is a structurally complex modified nucleoside ubiquitous to the Archaea, where it is found in the D-loop of virtually all archaeal transfer RNA (tRNA). Its unique structure, which includes a formamidine group that carries a formal positive charge, and location in the tRNA, led to the proposal that it serves a key role in stabilizing tRNA structure. Although G⁺ is limited to the Archaea, it is structurally related to the bacterial modified nucleoside queuosine, and the two share homologous enzymes for the early steps of their biosynthesis. In the Euryarchaeota, the last step of the archaeosine biosynthetic pathway involves the amidation of a nitrile group on an archaeosine precursor to give formamidine, a reaction catalyzed by the enzyme Archaeosine Synthase (ArcS). Most Crenarchaeota lack ArcS, but possess two proteins that inversely distribute with ArcS and each other, and are implicated in G⁺ biosynthesis. Here, we describe biochemical studies of one of these, the protein QueF-like (QueF-L) from Pyrobaculum calidifontis, that demonstrate the catalytic activity of QueF-L, establish where in the pathway QueF-L acts, and identify the source of ammonia in the reaction.


The Escherichia coli COG1738 Member YhhQ Is Involved in 7-Cyanodeazaguanine (preQ₀) Transport.

  • Rémi Zallot‎ et al.
  • Biomolecules‎
  • 2017‎

Queuosine (Q) is a complex modification of the wobble base in tRNAs with GUN anticodons. The full Q biosynthesis pathway has been elucidated in Escherichia coli. FolE, QueD, QueE and QueC are involved in the conversion of guanosine triphosphate (GTP) to 7-cyano-7-deazaguanine (preQ₀), an intermediate of increasing interest for its central role in tRNA and DNA modification and secondary metabolism. QueF then reduces preQ₀ to 7-aminomethyl-7-deazaguanine (preQ₁). PreQ₁ is inserted into tRNAs by tRNA guanine(34) transglycosylase (TGT). The inserted base preQ₁ is finally matured to Q by two additional steps involving QueA and QueG or QueH. Most Eubacteria harbor the full set of Q synthesis genes and are predicted to synthesize Q de novo. However, some bacteria only encode enzymes involved in the second half of the pathway downstream of preQ₀ synthesis, including the signature enzyme TGT. Different patterns of distribution of the queF, tgt, queA and queG or queH genes are observed, suggesting preQ₀, preQ₁ or even the queuine base being salvaged in specific organisms. Such salvage pathways require the existence of specific 7-deazapurine transporters that have yet to be identified. The COG1738 family was identified as a candidate for a missing preQ₀/preQ₁ transporter in prokaryotes, by comparative genomics analyses. The existence of Q precursor salvage was confirmed for the first time in bacteria, in vivo, through an indirect assay. The involvement of the COG1738 in salvage of a Q precursor was experimentally validated in Escherichia coli, where it was shown that the COG1738 family member YhhQ is essential for preQ₀ transport.


Specificity in the biosynthesis of the universal tRNA nucleoside N6-threonylcarbamoyl adenosine (t6A)-TsaD is the gatekeeper.

  • William Swinehart‎ et al.
  • RNA (New York, N.Y.)‎
  • 2020‎

N6-threonylcarbamoyl adenosine (t6A) is a nucleoside modification found in all kingdoms of life at position 37 of tRNAs decoding ANN codons, which functions in part to restrict translation initiation to AUG and suppress frameshifting at tandem ANN codons. In Bacteria the proteins TsaB, TsaC (or C2), TsaD, and TsaE, comprise the biosynthetic apparatus responsible for t6A formation. TsaC(C2) and TsaD harbor the relevant active sites, with TsaC(C2) catalyzing the formation of the intermediate threonylcarbamoyladenosine monophosphate (TC-AMP) from ATP, threonine, and CO2, and TsaD catalyzing the transfer of the threonylcarbamoyl moiety from TC-AMP to A37 of substrate tRNAs. Several related modified nucleosides, including hydroxynorvalylcarbamoyl adenosine (hn6A), have been identified in select organisms, but nothing is known about their biosynthesis. To better understand the mechanism and structural constraints on t6A formation, and to determine if related modified nucleosides are formed via parallel biosynthetic pathways or the t6A pathway, we carried out biochemical and biophysical investigations of the t6A systems from E. coli and T. maritima to address these questions. Using kinetic assays of TsaC(C2), tRNA modification assays, and NMR, our data demonstrate that TsaC(C2) exhibit relaxed substrate specificity, producing a variety of TC-AMP analogs that can differ in both the identity of the amino acid and nucleotide component, whereas TsaD displays more stringent specificity, but efficiently produces hn6A in E. coli and T. maritima tRNA. Thus, in organisms that contain modifications such as hn6A in their tRNA, we conclude that their origin is due to formation via the t6A pathway.


Clostridioides difficile Senses and Hijacks Host Heme for Incorporation into an Oxidative Stress Defense System.

  • Reece J Knippel‎ et al.
  • Cell host & microbe‎
  • 2020‎

Clostridioides difficile infection of the colon leads to severe inflammation and damage to the gastrointestinal epithelium due to the production of potent toxins. This inflammatory tissue damage causes the liberation of high concentrations of host heme at infection sites. Here, we identify the C. difficile heme-sensing membrane protein system (HsmRA) and show that this operon induces a protective response that repurposes heme to counteract antimicrobial oxidative stress responses. HsmR senses vertebrate heme, leading to increased expression of the hsmRA operon and subsequent deployment of HsmA to capture heme and reduce redox damage caused by inflammatory mediators of protection and antibiotic therapy. Strains with inactivated hsmR or hsmA have increased sensitivity to redox-active compounds and reduced colonization persistence in a murine model of relapse C. difficile infection. These results define a mechanism exploited by C. difficile to repurpose toxic heme within the inflamed gut as a shield against antimicrobial compounds.


Quantitative mapping of the cellular small RNA landscape with AQRNA-seq.

  • Jennifer F Hu‎ et al.
  • Nature biotechnology‎
  • 2021‎

Current next-generation RNA-sequencing (RNA-seq) methods do not provide accurate quantification of small RNAs within a sample, due to sequence-dependent biases in capture, ligation and amplification during library preparation. We present a method, absolute quantification RNA-sequencing (AQRNA-seq), that minimizes biases and provides a direct, linear correlation between sequencing read count and copy number for all small RNAs in a sample. Library preparation and data processing were optimized and validated using a 963-member microRNA reference library, oligonucleotide standards of varying length, and RNA blots. Application of AQRNA-seq to a panel of human cancer cells revealed >800 detectable miRNAs that varied during cancer progression, while application to bacterial transfer RNA pools, with the challenges of secondary structure and abundant modifications, revealed 80-fold variation in tRNA isoacceptor levels, stress-induced site-specific tRNA fragmentation, quantitative modification maps, and evidence for stress-induced, tRNA-driven, codon-biased translation. AQRNA-seq thus provides a versatile means to quantitatively map the small RNA landscape in cells.


The absence of the queuosine tRNA modification leads to pleiotropic phenotypes revealing perturbations of metal and oxidative stress homeostasis in Escherichia coli K12.

  • Leticia Pollo-Oliveira‎ et al.
  • Metallomics : integrated biometal science‎
  • 2022‎

Queuosine (Q) is a conserved hypermodification of the wobble base of tRNA containing GUN anticodons but the physiological consequences of Q deficiency are poorly understood in bacteria. This work combines transcriptomic, proteomic and physiological studies to characterize a Q-deficient Escherichia coli K12 MG1655 mutant. The absence of Q led to an increased resistance to nickel and cobalt, and to an increased sensitivity to cadmium, compared to the wild-type (WT) strain. Transcriptomic analysis of the WT and Q-deficient strains, grown in the presence and absence of nickel, revealed that the nickel transporter genes (nikABCDE) are downregulated in the Q- mutant, even when nickel is not added. This mutant is therefore primed to resist to high nickel levels. Downstream analysis of the transcriptomic data suggested that the absence of Q triggers an atypical oxidative stress response, confirmed by the detection of slightly elevated reactive oxygen species (ROS) levels in the mutant, increased sensitivity to hydrogen peroxide and paraquat, and a subtle growth phenotype in a strain prone to accumulation of ROS.


Beyond Blast: Enabling Microbiologists to Better Extract Literature, Taxonomic Distributions and Gene Neighborhood Information for Protein Families.

  • Colbie J Reed‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Capturing the published corpus of information on all members of a given protein family should be an essential step in any study focusing on specific members of that said family. Using a previously gathered dataset of more than 280 references mentioning a member of the DUF34 (NIF3/Ngg1-interacting Factor 3), we evaluated the efficiency of different databases and search tools, and devised a workflow that experimentalists can use to capture the most published information on members of a protein family in the least amount of time. To complement this workflow, web-based platforms allowing for the exploration of protein family members across sequenced genomes or for the analysis of gene neighborhood information were reviewed for their versatility and ease of use. Recommendations that can be used for experimentalist users, as well as educators, are provided and integrated within a customized, publicly accessible Wiki.


Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family.

  • Rémi Zallot‎ et al.
  • ACS chemical biology‎
  • 2014‎

Queuosine (Q) is a modification found at the wobble position of tRNAs with GUN anticodons. Although Q is present in most eukaryotes and bacteria, only bacteria can synthesize Q de novo. Eukaryotes acquire queuine (q), the free base of Q, from diet and/or microflora, making q an important but under-recognized micronutrient for plants, animals, and fungi. Eukaryotic type tRNA-guanine transglycosylases (eTGTs) are composed of a catalytic subunit (QTRT1) and a homologous accessory subunit (QTRTD1) forming a complex that catalyzes q insertion into target tRNAs. Phylogenetic analysis of eTGT subunits revealed a patchy distribution pattern in which gene losses occurred independently in different clades. Searches for genes co-distributing with eTGT family members identified DUF2419 as a potential Q salvage protein family. This prediction was experimentally validated in Schizosaccharomyces pombe by confirming that Q was present by analyzing tRNA(Asp) with anticodon GUC purified from wild-type cells and by showing that Q was absent from strains carrying deletions in the QTRT1 or DUF2419 encoding genes. DUF2419 proteins occur in most Eukarya with a few possible cases of horizontal gene transfer to bacteria. The universality of the DUF2419 function was confirmed by complementing the S. pombe mutant with the Zea mays (maize), human, and Sphaerobacter thermophilus homologues. The enzymatic function of this family is yet to be determined, but structural similarity with DNA glycosidases suggests a ribonucleoside hydrolase activity.


The Levels of a Universally Conserved tRNA Modification Regulate Cell Growth.

  • Diego Rojas-Benitez‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

N(6)-Threonylcarbamoyl-adenosine (t(6)A) is a universal modification occurring at position 37 in nearly all tRNAs that decode A-starting codons, including the eukaryotic initiator tRNA (tRNAi (Met)). Yeast lacking central components of the t(6)A synthesis machinery, such as Tcs3p (Kae1p) or Tcs5p (Bud32p), show slow-growth phenotypes. In the present work, we show that loss of the Drosophila tcs3 homolog also leads to a severe reduction in size and demonstrate, for the first time in a non-microbe, that Tcs3 is required for t(6)A synthesis. In Drosophila and in mammals, tRNAi (Met) is a limiting factor for cell and animal growth. We report that the t(6)A-modified form of tRNAi (Met) is the actual limiting factor. We show that changing the proportion of t(6)A-modified tRNAi (Met), by expression of an un-modifiable tRNAi (Met) or changing the levels of Tcs3, regulate target of rapamycin (TOR) kinase activity and influences cell and animal growth in vivo. These findings reveal an unprecedented relationship between the translation machinery and TOR, where translation efficiency, limited by the availability of t(6)A-modified tRNA, determines growth potential in eukaryotic cells.


Synergistic use of plant-prokaryote comparative genomics for functional annotations.

  • Svetlana Gerdes‎ et al.
  • BMC genomics‎
  • 2011‎

Identifying functions for all gene products in all sequenced organisms is a central challenge of the post-genomic era. However, at least 30-50% of the proteins encoded by any given genome are of unknown or vaguely known function, and a large number are wrongly annotated. Many of these 'unknown' proteins are common to prokaryotes and plants. We set out to predict and experimentally test the functions of such proteins. Our approach to functional prediction integrates comparative genomics based mainly on microbial genomes with functional genomic data from model microorganisms and post-genomic data from plants. This approach bridges the gap between automated homology-based annotations and the classical gene discovery efforts of experimentalists, and is more powerful than purely computational approaches to identifying gene-function associations.


Comparative genomic analysis of the DUF71/COG2102 family predicts roles in diphthamide biosynthesis and B12 salvage.

  • Valérie de Crécy-Lagard‎ et al.
  • Biology direct‎
  • 2012‎

The availability of over 3000 published genome sequences has enabled the use of comparative genomic approaches to drive the biological function discovery process. Classically, one used to link gene with function by genetic or biochemical approaches, a lengthy process that often took years. Phylogenetic distribution profiles, physical clustering, gene fusion, co-expression profiles, structural information and other genomic or post-genomic derived associations can be now used to make very strong functional hypotheses. Here, we illustrate this shift with the analysis of the DUF71/COG2102 family, a subgroup of the PP-loop ATPase family.


Identification of genes encoding tRNA modification enzymes by comparative genomics.

  • Valérie de Crécy-Lagard‎
  • Methods in enzymology‎
  • 2007‎

As the molecular adapters between codons and amino acids, transfer-RNAs are pivotal molecules of the genetic code. The coding properties of a tRNA molecule do not reside only in its primary sequence. Posttranscriptional nucleoside modifications, particularly in the anticodon loop, can modify cognate codon recognition, affect aminoacylation properties, or stabilize the codon-anticodon wobble base pairing to prevent ribosomal frameshifting. Despite a wealth of biophysical and structural knowledge of the tRNA modifications themselves, their pathways of biosynthesis had been until recently only partially characterized. This discrepancy was mainly due to the lack of obvious phenotypes for tRNA modification-deficient strains and to the difficulty of the biochemical assays used to detect tRNA modifications. However, the availability of hundreds of whole-genome sequences has allowed the identification of many of these missing tRNA-modification genes. This chapter reviews the methods that were used to identify these genes with a special emphasis on the comparative genomic approaches. Methods that link gene and function but do not rely on sequence homology will be detailed, with examples taken from the tRNA modification field.


The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA.

  • Basma El Yacoubi‎ et al.
  • Nucleic acids research‎
  • 2009‎

Threonylcarbamoyladenosine (t(6)A) is a universal modification found at position 37 of ANN decoding tRNAs, which imparts a unique structure to the anticodon loop enhancing its binding to ribosomes in vitro. Using a combination of bioinformatic, genetic, structural and biochemical approaches, the universal protein family YrdC/Sua5 (COG0009) was shown to be involved in the biosynthesis of this hypermodified base. Contradictory reports on the essentiality of both the yrdC wild-type gene of Escherichia coli and the SUA5 wild-type gene of Saccharomyces cerevisiae led us to reconstruct null alleles for both genes and prove that yrdC is essential in E. coli, whereas SUA5 is dispensable in yeast but results in severe growth phenotypes. Structural and biochemical analyses revealed that the E. coli YrdC protein binds ATP and preferentially binds RNA(Thr) lacking only the t(6)A modification. This work lays the foundation for elucidating the function of a protein family found in every sequenced genome to date and understanding the role of t(6)A in vivo.


Essential metabolism for a minimal cell.

  • Marian Breuer‎ et al.
  • eLife‎
  • 2019‎

JCVI-syn3A, a robust minimal cell with a 543 kbp genome and 493 genes, provides a versatile platform to study the basics of life. Using the vast amount of experimental information available on its precursor, Mycoplasma mycoides capri, we assembled a near-complete metabolic network with 98% of enzymatic reactions supported by annotation or experiment. The model agrees well with genome-scale in vivo transposon mutagenesis experiments, showing a Matthews correlation coefficient of 0.59. The genes in the reconstruction have a high in vivo essentiality or quasi-essentiality of 92% (68% essential), compared to 79% in silico essentiality. This coherent model of the minimal metabolism in JCVI-syn3A at the same time also points toward specific open questions regarding the minimal genome of JCVI-syn3A, which still contains many genes of generic or completely unclear function. In particular, the model, its comparison to in vivo essentiality and proteomics data yield specific hypotheses on gene functions and metabolic capabilities; and provide suggestions for several further gene removals. In this way, the model and its accompanying data guide future investigations of the minimal cell. Finally, the identification of 30 essential genes with unclear function will motivate the search for new biological mechanisms beyond metabolism.


Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea.

  • Laurence Prunetti‎ et al.
  • Archaea (Vancouver, B.C.)‎
  • 2016‎

Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies.


Mutations in PROSC Disrupt Cellular Pyridoxal Phosphate Homeostasis and Cause Vitamin-B6-Dependent Epilepsy.

  • Niklas Darin‎ et al.
  • American journal of human genetics‎
  • 2016‎

Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, functions as a cofactor in humans for more than 140 enzymes, many of which are involved in neurotransmitter synthesis and degradation. A deficiency of PLP can present, therefore, as seizures and other symptoms that are treatable with PLP and/or pyridoxine. Deficiency of PLP in the brain can be caused by inborn errors affecting B6 vitamer metabolism or by inactivation of PLP, which can occur when compounds accumulate as a result of inborn errors of other pathways or when small molecules are ingested. Whole-exome sequencing of two children from a consanguineous family with pyridoxine-dependent epilepsy revealed a homozygous nonsense mutation in proline synthetase co-transcribed homolog (bacterial), PROSC, which encodes a PLP-binding protein of hitherto unknown function. Subsequent sequencing of 29 unrelated indivduals with pyridoxine-responsive epilepsy identified four additional children with biallelic PROSC mutations. Pre-treatment cerebrospinal fluid samples showed low PLP concentrations and evidence of reduced activity of PLP-dependent enzymes. However, cultured fibroblasts showed excessive PLP accumulation. An E.coli mutant lacking the PROSC homolog (ΔYggS) is pyridoxine sensitive; complementation with human PROSC restored growth whereas hPROSC encoding p.Leu175Pro, p.Arg241Gln, and p.Ser78Ter did not. PLP, a highly reactive aldehyde, poses a problem for cells, which is how to supply enough PLP for apoenzymes while maintaining free PLP concentrations low enough to avoid unwanted reactions with other important cellular nucleophiles. Although the mechanism involved is not fully understood, our studies suggest that PROSC is involved in intracellular homeostatic regulation of PLP, supplying this cofactor to apoenzymes while minimizing any toxic side reactions.


Survey and Validation of tRNA Modifications and Their Corresponding Genes in Bacillus subtilis sp Subtilis Strain 168.

  • Valérie de Crécy-Lagard‎ et al.
  • Biomolecules‎
  • 2020‎

Extensive knowledge of both the nature and position of tRNA modifications in all cellular tRNAs has been limited to two bacteria, Escherichia coli and Mycoplasma capricolum. Bacillus subtilis sp subtilis strain 168 is the model Gram-positive bacteria and the list of the genes involved in tRNA modifications in this organism is far from complete. Mass spectrometry analysis of bulk tRNA extracted from B. subtilis, combined with next generation sequencing technologies and comparative genomic analyses, led to the identification of 41 tRNA modification genes with associated confidence scores. Many differences were found in this model Gram-positive bacteria when compared to E. coli. In general, B. subtilis tRNAs are less modified than those in E. coli, even if some modifications, such as m1A22 or ms2t6A, are only found in the model Gram-positive bacteria. Many examples of non-orthologous displacements and of variations in the most complex pathways are described. Paralog issues make uncertain direct annotation transfer from E. coli to B. subtilis based on homology only without further experimental validation. This difficulty was shown with the identification of the B. subtilis enzyme that introduces ψ at positions 31/32 of the tRNAs. This work presents the most up to date list of tRNA modification genes in B. subtilis, identifies the gaps in knowledge, and lays the foundation for further work to decipher the physiological role of tRNA modifications in this important model organism and other bacteria.


Detection of preQ0 deazaguanine modifications in bacteriophage CAjan DNA using Nanopore sequencing reveals same hypermodification at two distinct DNA motifs.

  • Witold Kot‎ et al.
  • Nucleic acids research‎
  • 2020‎

In the constant evolutionary battle against mobile genetic elements (MGEs), bacteria have developed several defense mechanisms, some of which target the incoming, foreign nucleic acids e.g. restriction-modification (R-M) or CRISPR-Cas systems. Some of these MGEs, including bacteriophages, have in turn evolved different strategies to evade these hurdles. It was recently shown that the siphophage CAjan and 180 other viruses use 7-deazaguanine modifications in their DNA to evade bacterial R-M systems. Among others, phage CAjan genome contains a gene coding for a DNA-modifying homolog of a tRNA-deazapurine modification enzyme, together with four 7-cyano-7-deazaguanine synthesis genes. Using the CRISPR-Cas9 genome editing tool combined with the Nanopore Sequencing (ONT) we showed that the 7-deazaguanine modification in the CAjan genome is dependent on phage-encoded genes. The modification is also site-specific and is found mainly in two separate DNA sequence contexts: GA and GGC. Homology modeling of the modifying enzyme DpdA provides insight into its probable DNA binding surface and general mode of DNA recognition.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: