Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

The Locust Standard Brain: A 3D Standard of the Central Complex as a Platform for Neural Network Analysis.

  • Basil El Jundi‎ et al.
  • Frontiers in systems neuroscience‎
  • 2009‎

Many insects use the pattern of polarized light in the sky for spatial orientation and navigation. We have investigated the polarization vision system in the desert locust. To create a common platform for anatomical studies on polarization vision pathways, Kurylas et al. (2008) have generated a three-dimensional (3D) standard brain from confocal microscopy image stacks of 10 male brains, using two different standardization methods, the Iterative Shape Averaging (ISA) procedure and the Virtual Insect Brain (VIB) protocol. Comparison of both standardization methods showed that the VIB standard is ideal for comparative volume analysis of neuropils, whereas the ISA standard is the method of choice to analyze the morphology and connectivity of neurons. The central complex is a key processing stage for polarization information in the locust brain. To investigate neuronal connections between diverse central-complex neurons, we generated a higher-resolution standard atlas of the central complex and surrounding areas, using the ISA method based on brain sections from 20 individual central complexes. To explore the usefulness of this atlas, two central-complex neurons, a polarization-sensitive columnar neuron (type CPU1a) and a tangential neuron that is activated during flight, the giant fan-shaped (GFS) neuron, were reconstructed 3D from brain sections. To examine whether the GFS neuron is a candidate to contribute to synaptic input to the CPU1a neuron, we registered both neurons into the standardized central complex. Visualization of both neurons revealed a potential connection of the CPU1a and GFS neurons in layer II of the upper division of the central body.


Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust Schistocerca gregaria.

  • M Jerome Beetz‎ et al.
  • The Journal of comparative neurology‎
  • 2015‎

Migrating desert locusts, Schistocerca gregaria, are able to use the skylight polarization pattern for navigation. They detect polarized light with a specialized dorsal rim area in their compound eye. After multistage processing, polarization signals are transferred to the central complex, a midline-spanning brain area involved in locomotor control. Polarization-sensitive tangential neurons (TB-neurons) of the protocerebral bridge, a part of the central complex, give rise to a topographic arrangement of preferred polarization angles in the bridge, suggesting that the central complex acts as an internal sky compass. TB-neurons connect the protocerebral bridge with two adjacent brain areas, the posterior optic tubercles. To analyze the polarotopic organization of the central complex further, we investigated the number and morphologies of TB-neurons and the presence and colocalization of three neuroactive substances in these neurons. Triple immunostaining with antisera against Diploptera punctata allatostatin (Dip-AST), Manduca sexta allatotropin (Mas-AT), and serotonin (5HT) raised in the same host species revealed three spatially distinct TB-neuron clusters, each consisting of 10 neurons per hemisphere: cluster 1 and 3 showed Dip-AST/5HT immunostaining, whereas cluster 2 showed Dip-AST/Mas-AT immunostaining. Five subtypes of TB-neuron could be distinguished based on ramification patterns. Corresponding to ramification domains in the protocerebral bridge, the neurons invaded distinct but overlapping layers within the posterior optic tubercle. Similarly, neurons interconnecting the tubercles of the two hemispheres also targeted distinct layers of these neuropils. From these data we propose a neuronal circuit that may be suited to stabilize the internal sky compass in the central complex of the locust.


Myoinhibitory peptides in the brain of the cockroach Leucophaea maderae and colocalization with pigment-dispersing factor in circadian pacemaker cells.

  • Julia Schulze‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

Myoinhibitory peptides (MIPs) are a family of insect W(X(6))Wamides with inhibitory effects on visceral muscles and juvenile hormone synthesis. Although MIPs are widely distributed within the nervous system, a detailed analysis of their distribution and function in insect brains is still missing. We analyzed the distribution of MIPs in the brain of the cockroach Leucophaea maderae. We focused on the accessory medulla (AMe), a small neuropil near the medulla that acts as the master circadian clock. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and Nano-LC electrospray ionization (ESI) mass spectrometry revealed five Lem-MIPs in preparations of the AMe and corpora cardiaca. The complete sequences of two of these peptides were identified. Immunocytochemistry revealed wide distribution of MIP-related peptides in the cockroach brain. The superior median protocerebrum, parts of the central complex, and the tritocerebrum showed particularly dense immunostaining. In contrast, only a few local interneurons were stained in the antennal lobe and a few extrinsic neurons in the mushroom body, including a giant neuron innervating the calyces. The noduli of the AMe showed dense immunostaining, and neurons in all AMe cell groups except the anterior neurons were labeled. Pigment-dispersing factor- (PDF) and MIP immunostaining was colocalized in two neurons of the AMe. No colocalization of MIP- and PDF immunostaining was detected in the anterior optic commissure, but two small PDF-immunoreactive commissural fibers near the posterior optic commissure showed colocalized MIP immunostaining. The results suggest that several MIPs participate in different functional circuits of the circadian system and are involved in multiple brain circuits of the Madeira cockroach.


GABA immunostaining in the central complex of dicondylian insects.

  • Uwe Homberg‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

The central complex is a group of midline-crossing neuropils in the insect brain involved in head direction coding, sky compass navigation, and spatial visual memory. To compare the neuroarchitecture and neurochemistry of the central complex in insects that differ in locomotion, ways of orientation, time of activity (diurnal, nocturnal), and evolutionary history, we studied the distribution of γ-aminobutyric acid (GABA) immunostaining in the central complex of 29 species, ranging from Zygentoma to Diptera. In all species, the lower division of the central body was densely innervated by GABA-immunoreactive tangential neurons. These neurons had additional arborizations in the bulb, a distinct region of synaptic complexes in the lateral complex, and somata in a cell cluster mediodorsally to the antennal lobe. Differences in the appearance of GABA immunostaining in the lower division of the central body corresponded to differences in neuropil architecture, such as transformation of the lower division into a toroid in certain Diptera and Heteroptera. In nearly all species two additional systems of tangential neuron of the upper division of the central body were GABA-immunoreactive. One of these systems diffusely invaded a superior layer, while the second system showed fan-like projections in an inferior layer. Sparse immunostaining in the protocerebral bridge was detected in cockroaches, a cricket, and two hemipteran species. The data show that three systems of GABA-immunoreactive tangential neurons of the central body are highly conserved and suggest that the layered organization of the upper division of the central body is, likewise, largely maintained from basal to advanced species.


Anatomical characterization of PDF-tri neurons and peptidergic neurons associated with eclosion behavior in Drosophila.

  • Mareike Selcho‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

The peptidergic Pigment-dispersing factor (PDF)-Tri neurons are a group of non-clock neurons that appear transiently around the time of adult ecdysis (=eclosion) in the fruit fly Drosophila melanogaster. This specific developmental pattern points to a function of these neurons in eclosion or other processes that are active around pupal-adult transition. As a first step to understand the role of these neurons, we here characterize the anatomy of the PDF-Tri neurons. In addition, we describe a further set of peptidergic neurons that have been associated with eclosion behavior, eclosion hormone (EH), and crustacean cardioactive peptide (CCAP) neurons, to single cell level in the pharate adult brain. PDF-Tri neurons as well as CCAP neurons co-express a classical transmitter indicated by the occurrence of small clear vesicles in addition to dense-core vesicles containing the peptides. In the tritocerebrum, gnathal ganglion and the superior protocerebrum PDF-Tri neurites contain peptidergic varicosities and both pre- and postsynaptic sites, suggesting that the PDF-Tri neurons represent modulatory rather than pure interneurons that connect the subesophageal zone with the superior protocerebrum. The extensive overlap of PDF-Tri arborizations with neurites of CCAP- and EH-expressing neurons in distinct brain regions provides anatomical evidence for a possible function of the PDF-Tri neurons in eclosion behavior.


Anatomical and ultrastructural analysis of the posterior optic tubercle in the locust Schistocerca gregaria.

  • Martina Held‎ et al.
  • Arthropod structure & development‎
  • 2020‎

Locusts, like other insects, partly rely on a sun compass mechanism for spatial orientation during seasonal migrations. To serve as a useful guiding cue throughout the day, however, the sun's apparent movement has to be accounted for. In locusts, a neural pathway from the accessory medulla, the circadian pacemaker, via the posterior optic tubercle, to the protocerebral bridge, part of the internal sky compass, has been proposed to mediate the required time compensation. Toward a better understanding of neural connectivities within the posterior optic tubercle, we investigated this neuropil using light and electron microscopy. Based on vesicle content, four types of synaptic profile were distinguished within the posterior optic tubercle. Immunogold labeling showed that pigment-dispersing hormone immunoreactive neurons from the accessory medulla, containing large dense-core vesicles, have presynaptic terminals in the posterior optic tubercle. Ultrastructural examination of two Neurobiotin-injected tangential neurons of the protocerebral bridge revealed that these neurons are postsynaptic in the posterior optic tubercle. Our data, therefore, support a role of the posterior optic tubercles in mediating circadian input to the insect sky compass.


Organization of descending neurons in the brain of the desert locust.

  • Erich M Staudacher‎ et al.
  • The Journal of comparative neurology‎
  • 2023‎

In most animals, multiple external and internal signals are integrated by the brain, transformed and, finally, transmitted as commands to motor centers. In insects, the central complex is a motor control center in the brain, involved in decision-making and goal-directed navigation. In desert locusts, it encodes celestial cues in a compass-like fashion indicating a role in sky-compass navigation. While several descending brain neurons (DBNs) including two neurons transmitting sky compass signals have been identified in the locust, a complete analysis of DBNs and their relationship to the central complex is still lacking. As a basis for further studies, we used Neurobiotin tracer injections into a neck connective to map the organization of DBNs in the brain. Cell counts revealed a maximum of 324 bilateral pairs of DBNs with somata distributed in 14 ipsilateral and nine contralateral groups. These neurons invaded most brain neuropils, especially the posterior slope, posterior and ventro-lateral protocerebrum, the antennal mechanosensory and motor center, but less densely the lateral accessory lobes that are targeted by central-complex outputs. No arborizations were found in the central complex and only few processes in the mushroom body, antennal lobe, lobula, medulla, and superior protocerebrum. Double label experiments provide evidence for the presence of GABA, dopamine, tyramine, but not serotonin, in small sets of DBNs. The data show that some DBNs may be targeted directly by central-complex outputs, but many others are likely only indirectly influenced by central-complex networks, in addition to input from multiple other brain areas.


Compass Cells in the Brain of an Insect Are Sensitive to Novel Events in the Visual World.

  • Tobias Bockhorst‎ et al.
  • PloS one‎
  • 2015‎

The central complex of the insect brain comprises a group of neuropils involved in spatial orientation and memory. In fruit flies it mediates place learning based on visual landmarks and houses neurons that encode the orientation for goal-directed locomotion, based on landmarks and self-motion cues for angular path-integration. In desert locusts, the central complex holds a compass-like representation of head directions, based on the polarization pattern of skylight. Through intracellular recordings from immobilized locusts, we investigated whether sky compass neurons of the central complex also represent the position or any salient feature of possible landmarks, in analogy to the observations in flies. Neurons showed strongest responses to the novel appearance of a small moving square, but we found no evidence for a topographic representation of object positions. Responses to an individual square were independent of direction of motion and trajectory, but showed rapid adaptation to successive stimulation, unaffected by changing the direction of motion. Responses reappeared, however, if the moving object changed its trajectory or if it suddenly reversed moving direction against the movement of similar objects that make up a coherent background-flow as induced by ego-motion. Response amplitudes co-varied with the precedent state of dynamic background activity, a phenomenon that has been related to attention-dependent saliency coding in neurons of the mammalian primary visual cortex. The data show that neurons of the central complex of the locust brain are visually bimodal, signaling sky compass direction and the novelty character of moving objects. These response properties might serve to attune compass-aided locomotor control to unexpected events in the environment. The difference to data obtained in fruit flies might relate to differences in the lifestyle of landmark learners (fly) and compass navigators (locust), point to the existence of parallel networks for the two orientation strategies, or reflect differences in experimental conditions.


Performance of polarization-sensitive neurons of the locust central complex at different degrees of polarization.

  • Ronja Hensgen‎ et al.
  • Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology‎
  • 2022‎

The polarization pattern of the sky is exploited by many insects for spatial orientation and navigation. It derives from Rayleigh scattering in the atmosphere and depends directly on the position of the sun. In the insect brain, the central complex (CX) houses neurons tuned to the angle of polarization (AoP), that together constitute an internal compass for celestial navigation. Polarized light is not only characterized by the AoP, but also by the degree of polarization (DoP), which can be highly variable, depending on sky conditions. Under a clear sky, the DoP of polarized sky light may reach up to 0.75 but is usually much lower especially when light is scattered by clouds or haze. To investigate how the polarization-processing network of the CX copes with low DoPs, we recorded intracellularly from neurons of the locust CX at different stages of processing, while stimulating with light of different DoPs. Significant responses to polarized light occurred down to DoPs of 0.05 indicating reliable coding of the AoP even at unfavorable sky conditions. Moreover, we found that the activity of neurons at the CX input stage may be strongly influenced by nearly unpolarized light, while the activity of downstream neurons appears less affected.


Neurons sensitive to non-celestial polarized light in the brain of the desert locust.

  • Marius Beck‎ et al.
  • Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology‎
  • 2023‎

Owing to alignment of rhodopsin in microvillar photoreceptors, insects are sensitive to the oscillation plane of polarized light. This property is used by many species to navigate with respect to the polarization pattern of light from the blue sky. In addition, the polarization angle of light reflected from shiny surfaces such as bodies of water, animal skin, leaves, or other objects can enhance contrast and visibility. Whereas photoreceptors and central mechanisms involved in celestial polarization vision have been investigated in great detail, little is known about peripheral and central mechanisms of sensing the polarization angle of light reflected from objects and surfaces. Desert locusts, like other insects, use a polarization-dependent sky compass for navigation but are also sensitive to polarization angles from horizontal directions. In order to further analyze the processing of polarized light reflected from objects or water surfaces, we tested the sensitivity of brain interneurons to the angle of polarized blue light presented from ventral direction in locusts that had their dorsal eye regions painted black. Neurons encountered interconnect the optic lobes, invade the central body, or send descending axons to the ventral nerve cord but are not part of the polarization vision pathway involved in sky-compass coding.


Distribution and daily oscillation of GABA in the circadian system of the cockroach Rhyparobia maderae.

  • Azar Massah‎ et al.
  • The Journal of comparative neurology‎
  • 2022‎

Gamma-aminobutyric acid (GABA) is the prevalent inhibitory neurotransmitter in nervous systems promoting sleep in both mammals and insects. In the Madeira cockroach, sleep-wake cycles are controlled by a circadian clock network in the brain's optic lobes, centered in the accessory medulla (AME) with its innervating pigment-dispersing factor (PDF) expressing clock neurons at the anterior-ventral rim of the medulla. GABA is present in cell clusters that innervate different circuits of the cockroach's AME clock, without colocalizing in PDF clock neurons. Physiological, immunohistochemical, and behavioral assays provided evidence for a role of GABA in light entrainment, possibly via the distal tract that connects the AME's glomeruli to the medulla. Furthermore, GABA was implemented in clock outputs to multiple effector systems in optic lobe and midbrain. Here, GABAergic brain circuits were analyzed further, focusing on the circadian system in search for sleep/wake controlling brain circuits. All GABA-immunoreactive neurons of the cockroach brain were also stained with an antiserum against the GABA-synthesizing enzyme glutamic acid decarboxylase. We found strong overlap of the distribution of GABA-immunoreactive networks with PDF clock networks in optic lobes and midbrain. Neurons in five of the six soma groups that innervate the clock exhibited GABA immunoreactivity. The intensity of GABA immunoreactivity in the distal tract showed daily fluctuations with maximum staining intensity in the middle of the day and weakest staining at the end of the day. Quantification via enzyme-linked immunosorbent assay and quantitative liquid chromatography coupled to electrospray ionization tandem mass spectrometry, likewise, showed higher GABA levels in the optic lobe during the inactivity phase of the cockroach during the day and lower levels during its activity phase at dusk. Our data further support the hypothesis that light- and PDF-dependently the circadian clock network of the cockroach controls GABA levels and thereby promotes sleep during the day.


Tyrosine hydroxylase immunostaining in the central complex of dicondylian insects.

  • Josephine Timm‎ et al.
  • The Journal of comparative neurology‎
  • 2021‎

Dopamine acts as a neurohormone and neurotransmitter in the insect nervous system and controls a variety of physiological processes. Dopaminergic neurons also innervate the central complex (CX), a multisensory center of the insect brain involved in sky compass navigation, goal-directed locomotion and sleep control. To infer a possible influence of evolutionary history and lifestyle on the neurochemical architecture of the CX, we have studied the distribution of neurons immunoreactive to tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. Analysis of representatives from 12 insect orders ranging from firebrats to flies revealed high conservation of immunolabeled neurons. One type of TH-immunoreactive neuron was found in all species studied. The neurons have somata in the pars intercerebralis, arborizations in the lateral accessory lobes, and axonal ramifications in the central body and noduli. In all pterygote species, a second type of tangential neuron of the upper division of the central body was TH-immunoreactive. The neurons have cell bodies near the calyces and arborizations in the superior protocerebrum. Both types of neuron showed species-specific variations in cell number and in the innervated areas outside and inside the CX. Additional neurons were found in only two taxa: one type of columnar neuron showed TH immunostaining in the water strider Gerris lacustris, but not in other Heteroptera, and a tritocerebral neuron innervating the protocerebral bridge was immunolabeled in Diptera. The data show largely taxon-specific variations of a common ground pattern of putatively dopaminergic neurons that may be commonly involved in state-dependent modulation of CX function.


3D-atlas of the brain of the cockroach Rhyparobia maderae.

  • Vanessa Althaus‎ et al.
  • The Journal of comparative neurology‎
  • 2022‎

The Madeira cockroach Rhyparobia maderae is a nocturnal insect and a prominent model organism for the study of circadian rhythms. Its master circadian clock, controlling circadian locomotor activity and sleep-wake cycles, is located in the accessory medulla of the optic lobe. For a better understanding of brain regions controlled by the circadian clock and brain organization of this insect in general, we created a three-dimensional (3D) reconstruction of all neuropils of the cerebral ganglia based on anti-synapsin and anti-γ-aminobutyric acid immunolabeling of whole mount brains. Forty-nine major neuropils were identified and three-dimensionally reconstructed. Single-cell dye fills complement the data and provide evidence for distinct subdivisions of certain brain areas. Most neuropils defined in the fruit fly Drosophila melanogaster could be distinguished in the cockroach as well. However, some neuropils identified in the fruit fly do not exist as distinct entities in the cockroach while others are lacking in the fruit fly. In addition to neuropils, major fiber systems, tracts, and commissures were reconstructed and served as important landmarks separating brain areas. Being a nocturnal insect, R. maderae is an important new species to the growing collection of 3D insect brain atlases and only the second hemimetabolous insect, for which a detailed 3D brain atlas is available. This atlas will be highly valuable for an evolutionary comparison of insect brain organization and will greatly facilitate addressing brain areas that are supervised by the circadian clock.


Comparative morphology of serotonin-immunoreactive neurons innervating the central complex in the brain of dicondylian insects.

  • Uwe Homberg‎ et al.
  • The Journal of comparative neurology‎
  • 2023‎

Serotonin (5-hydroxytryptamine) acts as a widespread neuromodulator in the nervous system of vertebrates and invertebrates. In insects, it promotes feeding, enhances olfactory sensitivity, modulates aggressive behavior, and, in the central complex of Drosophila, serves a role in sleep homeostasis. In addition to a role in sleep-wake regulation, the central complex has a prominent role in spatial orientation, goal-directed locomotion, and navigation vector memory. To further understand the role of serotonergic signaling in this brain area, we analyzed the distribution and identity of serotonin-immunoreactive neurons across a wide range of insect species. While one bilateral pair of tangential neurons innervating the central body was present in all species studied, a second type was labeled in all neopterans but not in dragonflies and firebrats. Both cell types show conserved major fiber trajectories but taxon-specific differences in dendritic targets outside the central body and axonal terminals in the central body, noduli, and lateral accessory lobes. In addition, numerous tangential neurons of the protocerebral bridge were labeled in all studied polyneopteran species except for Phasmatodea, but not in Holometabola. Lepidoptera and Diptera showed additional labeling of two bilateral pairs of neurons of a third type. The presence of serotonin in systems of columnar neurons apparently evolved independently in dragonflies and desert locusts. The data suggest distinct evolutionary changes in the composition of serotonin-immunolabeled neurons of the central complex and provides a promising basis for a phylogenetic study in a wider range of arthropod species.


A systematic nomenclature for the insect brain.

  • Kei Ito‎ et al.
  • Neuron‎
  • 2014‎

Despite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil boundaries has made it difficult to document precise locations of neuronal projections for connectomics study. To address such issues, a consortium of neurobiologists studying arthropod brains, the Insect Brain Name Working Group, has established the present hierarchical nomenclature system, using the brain of Drosophila melanogaster as the reference framework, while taking the brains of other taxa into careful consideration for maximum consistency and expandability. The following summarizes the consortium's nomenclature system and highlights examples of existing ambiguities and remedies for them. This nomenclature is intended to serve as a standard of reference for the study of the brain of Drosophila and other insects.


Identification of distinct tyraminergic and octopaminergic neurons innervating the central complex of the desert locust, Schistocerca gregaria.

  • Uwe Homberg‎ et al.
  • The Journal of comparative neurology‎
  • 2013‎

The central complex is a group of modular neuropils in the insect brain with a key role in visual memory, spatial orientation, and motor control. In desert locusts the neurochemical organization of the central complex has been investigated in detail, including the distribution of dopamine-, serotonin-, and histamine-immunoreactive neurons. In the present study we identified neurons immunoreactive with antisera against octopamine, tyramine, and the enzymes required for their synthesis, tyrosine decarboxylase (TDC) and tyramine β-hydroxylase (TBH). Octopamine- and tyramine immunostaining in the central complex differed strikingly. In each brain hemisphere tyramine immunostaining was found in four neurons innervating the noduli, 12-15 tangential neurons of the protocerebral bridge, and about 17 neurons that supplied the anterior lip region and parts of the central body. In contrast, octopamine immunostaining was present in two bilateral pairs of ascending fibers innervating the upper division of the central body and a single pair of neurons with somata near the esophageal foramen that gave rise to arborizations in the protocerebral bridge. Immunostaining for TDC, the enzyme converting tyrosine to tyramine, combined the patterns seen with the tyramine- and octopamine antisera. Immunostaining for TBH, the enzyme converting tyramine to octopamine, in contrast, was strikingly similar to octopamine immunolabeling. We conclude that tyramine and octopamine act as neurotransmitters/modulators in distinct sets of neurons of the locust central complex with TBH likely being the rate-limiting enzyme for octopamine synthesis in a small subpopulation of TDC-containing neurons.


Receptive field structures for two celestial compass cues at the input stage of the central complex in the locust brain.

  • Naomi Takahashi‎ et al.
  • The Journal of experimental biology‎
  • 2022‎

Successful navigation depends on an animal's ability to perceive its spatial orientation relative to visual surroundings. Heading direction in insects is represented in the central complex (CX), a navigation center in the brain, to generate steering commands. In insects that navigate relative to sky compass signals, CX neurons are tuned to celestial cues indicating the location of the sun. The desert locust CX contains a compass-like representation of two related celestial cues: the direction of unpolarized direct sunlight and the pattern of polarized light, which depends on the sun position. Whether congruent tuning to these two compass cues emerges within the CX network or is inherited from CX input neurons is unclear. To address this question, we intracellularly recorded from GABA-immunoreactive TL neurons, which are input elements to the locust CX (corresponding to R neurons in Drosophila), while applying visual stimuli simulating unpolarized sunlight and polarized light across the hemisphere above the animal. We show that TL neurons have large receptive fields for both types of stimuli. However, faithful integration of polarization angles across the dorsal hemisphere, or matched-filter ability to encode particular sun positions, was found in only two out of 22 recordings. Those two neurons also showed a good match in sun position coding through polarized and unpolarized light signaling, whereas 20 neurons showed substantial mismatch in signaling of the two compass cues. The data, therefore, suggest that considerable refinement of azimuth coding based on sky compass signals occurs at the synapses from TL neurons to postsynaptic CX compass neurons.


Organization and neural connections of the lateral complex in the brain of the desert locust.

  • Ronja Hensgen‎ et al.
  • The Journal of comparative neurology‎
  • 2021‎

The lateral complexes (LXs) are bilaterally paired neuropils in the insect brain that mediate communication between the central complex (CX), a brain center controlling spatial orientation, various sensory processing areas, and thoracic motor centers that execute locomotion. The LX of the desert locust consists of the lateral accessory lobe (LAL), and the medial and lateral bulb. We have analyzed the anatomical organization and the neuronal connections of the LX in the locust, to provide a basis for future functional studies. Reanalyzing the morphology of neurons connecting the CX and the LX revealed likely feedback loops in the sky compass network of the CX via connections in the gall of the LAL and a newly identified neuropil termed ovoid body. In addition, we characterized 16 different types of neuron that connect the LAL with other areas in the brain. Eight types of neuron provide information flow between both LALs, five types are LAL input neurons, and three types are LAL output neurons. Among these are neurons providing input from sensory brain areas such as the lobula and antennal neuropils. Brain regions most often targeted by LAL neurons are the posterior slope, the wedge, and the crepine. Two descending neurons with dendrites in the LAL were identified. Our data support and complement existing knowledge about how the LAL is embedded in the neuronal network involved in processing of sensory information and generation of appropriate behavioral output for goal-directed locomotion.


A unified platform to manage, share, and archive morphological and functional data in insect neuroscience.

  • Stanley Heinze‎ et al.
  • eLife‎
  • 2021‎

Insect neuroscience generates vast amounts of highly diverse data, of which only a small fraction are findable, accessible and reusable. To promote an open data culture, we have therefore developed the InsectBrainDatabase (IBdb), a free online platform for insect neuroanatomical and functional data. The IBdb facilitates biological insight by enabling effective cross-species comparisons, by linking neural structure with function, and by serving as general information hub for insect neuroscience. The IBdb allows users to not only effectively locate and visualize data, but to make them widely available for easy, automated reuse via an application programming interface. A unique private mode of the database expands the IBdb functionality beyond public data deposition, additionally providing the means for managing, visualizing, and sharing of unpublished data. This dual function creates an incentive for data contribution early in data management workflows and eliminates the additional effort normally associated with publicly depositing research data.


Anatomy of the lobula complex in the brain of the praying mantis compared to the lobula complexes of the locust and cockroach.

  • Ronny Rosner‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

The praying mantis is an insect which relies on vision for capturing prey, avoiding being eaten and for spatial orientation. It is well known for its ability to use stereopsis for estimating the distance of objects. The neuronal substrate mediating visually driven behaviors, however, is not very well investigated. To provide a basis for future functional studies, we analyzed the anatomical organization of visual neuropils in the brain of the praying mantis Hierodula membranacea and provide supporting evidence from a second species, Rhombodera basalis, with particular focus on the lobula complex (LOX). Neuropils were three-dimensionally reconstructed from synapsin-immunostained whole mount brains. The neuropil organization and the pattern of γ-aminobutyric acid immunostaining of the medulla and LOX were compared between the praying mantis and two related polyneopteran species, the Madeira cockroach and the desert locust. The investigated visual neuropils of the praying mantis are highly structured. Unlike in most insects the LOX of the praying mantis consists of five nested neuropils with at least one neuropil not present in the cockroach or locust. Overall, the mantis LOX is more similar to the LOX of the locust than the more closely related cockroach suggesting that the sensory ecology plays a stronger role than the phylogenetic distance of the three species in structuring this center of visual information processing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: