Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 137 papers

Role of AMP-activated protein kinase α1 in angiotensin-II-induced renal Tgfß-activated kinase 1 activation.

  • Sobuj Mia‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Angiotensin-II is a key factor in renal fibrosis. Obstructive nephropathy induces an isoform shift from catalytic Ampkα2 towards Ampkα1 which contributes to signaling involved in renal tissue injury. The present study explored whether the Ampkα1 isoform contributes to the renal effects of angiotensin-II. To this end, angiotensin-II was infused by subcutaneous implantation of osmotic minipumps in gene-targeted mice lacking functional Ampkα1 (Ampkα1(-/-)) and corresponding wild-type mice (Ampkα1(+/+)). Western blotting and qRT-PCR were employed to determine protein abundance and mRNA levels, respectively, in renal tissue. In Ampkα1(+/+) mice, angiotensin-II increased renal Ampkα1 protein expression without significantly modifying renal Ampkα2 protein expression. The renal phosphorylated Ampkα (Thr(172)) protein abundance was not affected by angiotensin-II in neither genotypes, but was significantly lower in Ampkα1(-/-) mice than Ampkα1(+/+) mice. Angiotensin-II increased the phosphorylation of Tak1 (Ser(412)) in renal tissue of Ampkα1(+/+) mice, an effect virtually absent in the Ampkα1(-/-) mice. Furthermore, angiotensin-II treatment significantly increased renal protein and mRNA expression of α-smooth muscle actin (αSma) as well as Tak1-target gene expression: Cox2, Il6 and Pai1 in Ampkα1(+/+) mice, all effects significantly less pronounced in Ampkα1(-/-) mice. In conclusion, angiotensin-II up-regulates the Ampkα1 isoform in renal tissue. Ampkα1 participates in renal Tak1 activation and Tak1-dependent signaling induced by angiotensin-II.


LeftyA decreases Actin Polymerization and Stiffness in Human Endometrial Cancer Cells.

  • Madhuri S Salker‎ et al.
  • Scientific reports‎
  • 2016‎

LeftyA, a cytokine regulating stemness and embryonic differentiation, down-regulates cell proliferation and migration. Cell proliferation and motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explored whether LeftyA modifies actin cytoskeleton, shape and stiffness of Ishikawa cells, a well differentiated endometrial carcinoma cell line. The effect of LeftyA on globular over filamentous actin ratio was determined utilizing Western blotting and flow cytometry. Rac1 and PAK1 transcript levels were measured by qRT-PCR as well as active Rac1 and PAK1 by immunoblotting. Cell stiffness (quantified by the elastic modulus), cell surface area and cell volume were studied by atomic force microscopy (AFM). As a result, 2 hours treatment with LeftyA (25 ng/ml) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin, and decreased cell stiffness, surface area and volume. The effect of LeftyA on actin polymerization was mimicked by pharmacological inhibition of Rac1 and PAK1. In the presence of the Rac1 or PAK1 inhibitor LeftyA did not lead to significant further actin depolymerization. In conclusion, LeftyA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization, cell softening and cell shrinkage.


A Comparative pO2 Probe and [18F]-Fluoro-Azomycinarabino-Furanoside ([18F]FAZA) PET Study Reveals Anesthesia-Induced Impairment of Oxygenation and Perfusion in Tumor and Muscle.

  • Moritz Mahling‎ et al.
  • PloS one‎
  • 2015‎

CT26 colon carcinoma-bearing mice were anesthetized with isoflurane (IF) or ketamine/xylazine (KX) while breathing air or oxygen (O2). We performed 10 min static PET scans 1 h, 2 h and 3 h after [18F]FAZA injection and calculated the [18F]FAZA-uptake and tumor-to-muscle ratios (T/M). In another experimental group, we placed a pO2 probe in the tumor as well as in the gastrocnemius muscle to measure the pO2 and perfusion.


Chorein addiction in VPS13A overexpressing rhabdomyosarcoma cells.

  • Sabina Honisch‎ et al.
  • Oncotarget‎
  • 2015‎

Chorein encoded by VPS13A (vacuolar protein sorting-associated protein 13A) is defective in chorea-acanthocytosis. Chorein fosters neuronal cell survival, cortical actin polymerization and cell stiffness. In view of its anti-apoptotic effect in neurons, we explored whether chorein is expressed in cancer cells and influences cancer cell survival. RT-PCR was employed to determine transcript levels, specific siRNA to silence chorein, FACS analysis to follow apoptosis and Western blotting to quantify protein abundance. Chorein transcripts were detected in various cancer cell types. The mRNA coding for chorein and chorein protein were most abundant in drug resistant, poorly differentiated human rhabdomyosarcoma cells. Chorein silencing significantly reduced the ratio of phosphorylated (and thus activated) to total phosphoinositide 3 kinase (PI-3K), pointing to inactivation of this crucial pro-survival signaling molecule. Moreover, chorein silencing diminished transcript levels and protein expression of anti-apoptotic BCL-2 and enhanced transcript levels of pro-apoptotic Bax. Silencing of chorein in rhabdomyosarcoma cells was followed by mitochondrial depolarization, caspase 3 activation and stimulation of early and late apoptosis. In conclusion, chorein is expressed in various cancer cells. In cells with high chorein expression levels chorein silencing promotes apoptotic cell death, an effect paralleled by down-regulation of PI-3K activity and BCL-2/Bax expression ratio.


SGK1 Inhibits Autophagy in Murine Muscle Tissue.

  • Theresia Zuleger‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

As autophagy is linked to several pathological conditions, like cancer and neurodegenerative diseases, it is crucial to understand its regulatory signaling network. In this study, we investigated the role of the serum- and glucocorticoid-induced protein kinase 1 (SGK1) in the control of autophagy.


Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system.

  • Bradley A Heller‎ et al.
  • The Journal of cell biology‎
  • 2014‎

The PI 3-kinase (PI 3-K) signaling pathway is essential for Schwann cell myelination. Here we have characterized PI 3-K effectors activated during myelination by probing myelinating cultures and developing nerves with an antibody that recognizes phosphorylated substrates for this pathway. We identified a discrete number of phospho-proteins including the S6 ribosomal protein (S6rp), which is down-regulated at the onset of myelination, and N-myc downstream-regulated gene-1 (NDRG1), which is up-regulated strikingly with myelination. We show that type III Neuregulin1 on the axon is the primary activator of S6rp, an effector of mTORC1. In contrast, laminin-2 in the extracellular matrix (ECM), signaling through the α6β4 integrin and Sgk1 (serum and glucocorticoid-induced kinase 1), drives phosphorylation of NDRG1 in the Cajal bands of the abaxonal compartment. Unexpectedly, mice deficient in α6β4 integrin signaling or Sgk1 exhibit hypermyelination during development. These results identify functionally and spatially distinct PI 3-K pathways: an early, pro-myelinating pathway driven by axonal Neuregulin1 and a later-acting, laminin-integrin-dependent pathway that negatively regulates myelination.


Improvement of neuronal bioenergetics by neurosteroids: implications for age-related neurodegenerative disorders.

  • Amandine Grimm‎ et al.
  • Biochimica et biophysica acta‎
  • 2014‎

The brain has high energy requirements to maintain neuronal activity. Consequently impaired mitochondrial function will lead to disease. Normal aging is associated with several alterations in neurosteroid production and secretion. Decreases in neurosteroid levels might contribute to brain aging and loss of important nervous functions, such as memory. Up to now, extensive studies only focused on estradiol as a promising neurosteroid compound that is able to ameliorate cellular bioenergetics, while the effects of other steroids on brain mitochondria are poorly understood or not investigated at all. Thus, we aimed to characterize the bioenergetic modulating profile of a panel of seven structurally diverse neurosteroids (progesterone, estradiol, estrone, testosterone, 3α-androstanediol, DHEA and allopregnanolone), known to be involved in brain function regulation. Of note, most of the steroids tested were able to improve bioenergetic activity in neuronal cells by increasing ATP levels, mitochondrial membrane potential and basal mitochondrial respiration. In parallel, they modulated redox homeostasis by increasing antioxidant activity, probably as a compensatory mechanism to a slight enhancement of ROS which might result from the rise in oxygen consumption. Thereby, neurosteroids appeared to act via their corresponding receptors and exhibited specific bioenergetic profiles. Taken together, our results indicate that the ability to boost mitochondria is not unique to estradiol, but seems to be a rather common mechanism of different steroids in the brain. Thus, neurosteroids may act upon neuronal bioenergetics in a delicate balance and an age-related steroid disturbance might be involved in mitochondrial dysfunction underlying neurodegenerative disorders.


Blood platelets in the progression of Alzheimer's disease.

  • Nina S Gowert‎ et al.
  • PloS one‎
  • 2014‎

Alzheimer's disease (AD) is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA). Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß) peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS) and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke.


Decreased store operated Ca2+ entry in dendritic cells isolated from mice expressing PKB/SGK-resistant GSK3.

  • Evi Schmid‎ et al.
  • PloS one‎
  • 2014‎

Dendritic cells (DCs), key players of immunity, are regulated by glycogen synthase kinase GSK3. GSK3 activity is suppressed by PKB/Akt and SGK isoforms, which are in turn stimulated by the PI3K pathway. Exposure to bacterial lipopolysaccharides increases cytosolic Ca(2+)-concentration ([Ca(2+)]i), an effect augmented in DCs isolated from mutant mice expressing PKB/SGK-resistant GSK3α,β (gsk3(KI) ). Factors affecting [Ca(2+)]i include Ca(2+)-release from intracellular stores (CRIS), store-operated Ca(2+)-entry (SOCE) through STIM1/STIM2-regulated Orai1, K(+)-dependent Na(+)/Ca(2+)-exchangers (NCKX), K(+)-independent Na(+)/Ca(2+)-exchangers (NCX) and calbindin-D28k. The present study explored whether PKB/SGK-dependent GSK3α, β-activity impacts on CRIS, SOCE, NCKX, NCX or calbindin. DCs were isolated from gsk3(KI) mice and respective wild-type mice (gsk3(WT) ), [Ca(2+)]i estimated from Fura2 fluorescence, Orai1, STIM1, STIM2 as well as calbindin-D28k protein abundance determined by Western blotting and mRNA levels quantified by real time PCR. As a result, thapsigargin-induced CRIS and SOCE were significantly blunted by GSK3-inhibitors SB216763 (1-10 µM, 30 min) or GSK-XIII (10 µM, 30 min) but were significantly lower in gsk3(WT) than in gsk3(KI) DCs. Orai1, STIM1 and STIM2 protein abundance was significantly lower and calbindin-D28k abundance significantly higher in gsk3(KI) than in gsk3(WT) DCs. Activity of NCKX and NCX was significantly higher in gsk3(KI) than in gsk3(WT) DCs and was significantly increased by SB216763 (1 µM, 30 min) or GSK-XIII (10 µM, 30 min). Treatment of gsk3(WT) DCs with SB216763 (1 µM, 4-24 h) or GSK-XIII (10 µM, 4-24 h) did not significantly modify the protein abundance of Orai1, STIM1 and STIM2. The present observations point to a dual role of GSK3 in the regulation of Ca(2+) in DCs. Acute inhibition of GSK3 blunted the increase of [Ca(2+)]i following CRIS and SOCE and stimulated NCKX/NCX activity. However, expression of PKB/SGK-resistant GSK3α, β downregulated the increase of [Ca(2+)]i following CRIS and SOCE, an effect at least partially due to downregulation of Orai1, STIM1 and STIM2 expression as well as upregulation of Na(+)/Ca(2+)-exchanger activity and calbindin D28k expression.


Association of frontal gray matter volume and cerebral perfusion in heroin addiction: a multimodal neuroimaging study.

  • Niklaus Denier‎ et al.
  • Frontiers in psychiatry‎
  • 2013‎

Structure and function are closely related in the healthy human brain. In patients with chronic heroin exposure, brain imaging studies have identified long-lasting changes in gray matter (GM) volume. More recently, we showed that acute application of heroin in dependent patients results in hypoperfusion of fronto-temporal areas compared with the placebo condition. However, the relationship between structural and cerebral blood flow (CBF) changes in heroin addiction has not yet been investigated. Moreover, it is not known whether there is any interaction between the chronic structural changes and the short and long-term effects on perfusion caused by heroin. Using a double-blind, within-subject design, heroin or placebo (saline) was administered to 14 heroin-dependent patients from a stable heroin-assisted treatment program, in order to observe acute short-term effects. Arterial spin labeling (ASL) was used to calculate perfusion quantification maps in both treatment conditions, while Voxel-Based Morphometry (VBM) was conducted to calculate regional GM density. VBM and ASL data were used to calculate homologous correlation fields by Biological Parametric Mapping (BPM) and a whole-brain Pearson r correlation. We correlated each perfusion condition (heroin and placebo) separately with a VBM sample that was identical for the two treatment conditions. It was assumed that heroin-associated perfusion is manifested in short-term effects, while placebo-associated perfusion is more related to long-term effects. In order to restrict our analyses to fronto-temporal regions, we used an explicit mask for our analyses. Correlation analyses revealed a significant positive correlation in frontal areas between GM and both perfusion conditions (heroin and placebo). Heroin-associated perfusion was also negatively correlated with GM in the inferior temporal gyrus on both hemispheres. These findings indicate that, in heroin-dependent patients, low GM volume is positively associated with low perfusion within frontal regions.


The production of fibroblast growth factor 23 is controlled by TGF-β2.

  • Martina Feger‎ et al.
  • Scientific reports‎
  • 2017‎

Transforming growth factor-β (TGF-β) is a cytokine produced by many cell types and implicated in cell growth, differentiation, apoptosis, and inflammation. It stimulates store-operated calcium entry (SOCE) through the calcium release-activated calcium (CRAC) channel Orai1/Stim1 in endometrial Ishikawa cells. Bone cells generate fibroblast growth factor (FGF) 23, which inhibits renal phosphate reabsorption and 1,25(OH)2D3 formation in concert with its co-receptor Klotho. Moreover, Klotho and FGF23 counteract aging and age-related clinical conditions. FGF23 production is dependent on Orai1-mediated SOCE and inflammation. Here, we explored a putative role of TGF-β2 in FGF23 synthesis. To this end, UMR106 osteoblast-like cells were cultured, Fgf23 transcript levels determined by qRT-PCR, FGF23 protein measured by ELISA, and SOCE analyzed by fluorescence optics. UMR106 cells expressed TGF-β receptors 1 and 2. TGF-β2 enhanced SOCE and potently stimulated the production of FGF23, an effect significantly attenuated by SB431542, an inhibitor of the transforming growth factor-β (TGF-β) type I receptor activin receptor-like kinases ALK5, ALK4, and ALK7. Furthermore, the TGF-β2 effect on FGF23 production was blunted by SOCE inhibitor 2-APB. We conclude that TGF-β2 induces FGF23 production, an effect involving up-regulation of SOCE.


Downregulation of endometrial mesenchymal marker SUSD2 causes cell senescence and cell death in endometrial carcinoma cells.

  • Shaqiu Zhang‎ et al.
  • PloS one‎
  • 2017‎

The cause of death among the majority of endometrial cancer patients involves migration of cancer cells within the peritoneal cavity and subsequent implantation of cancer spheroids into neighbouring organs. It is, thereby, important to identify factors that mediate metastasis. Cell adhesion and migration are modified by the mesenchymal stem cell (MSC) marker Sushi domain containing 2 (SUSD2), a type I transmembrane protein that participates in the orchestration of cell adhesion and migration through interaction with its partner Galactosidase-binding soluble-1 (LGALS1). MSCs have emerged as attractive targets in cancer therapy. Human endometrial adenocarcinoma (Ishikawa) cells were treated with TGFβ (10 ng/ml) for 72h. SUSD2, LGALS1 and MKI67 transcript levels were quantified using qRT-PCR. The proportion of SUSD2 positive (SUSD2+) cells and SMAD2/3 abundance were quantified by FACS and Western blotting, respectively. Senescent cells were identified with β-galactosidase staining; cell cycle and cell death were quantified using Propidium Iodide staining. Treatment of endometrial cancer cells (Ishikawa cells) with TGFβ (10 ng/ml) significantly decreased SUSD2 transcript levels and the proportion of SUSD2 positive cells. Silencing of SUSD2 using siRNA resulted in senescence and cell death of Ishikawa cells via activation of SMAD2/3. These findings suggest that SUSD2 counteracts senescence and cell death and is thus a potential chemotherapeutic target in human endometrial cancer.


Adhesion of annexin 7 deficient erythrocytes to endothelial cells.

  • Majed Abed‎ et al.
  • PloS one‎
  • 2013‎

Annexin 7 deficiency has previously been shown to foster suicidal death of erythrocytes or eryptosis, which is triggered by increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) and characterized by cell shrinkage and cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface. Eryptosis following increase of [Ca(2+)](i) by Ca(2+) ionophore ionomycin, osmotic shock or energy depletion was more pronounced in erythrocytes from annexinA7-deficient mice (anxA7(-/-)) than in erythrocytes from wild type mice (anxA7(+/+)). As phosphatidylserine exposure is considered to mediate adhesion of erythrocytes to the vascular wall, the present study explored adhesion of erythrocytes from anx7(-/-) and anx7(+/+)-mice following increase of [Ca(2+)](i) by Ca(2+) ionophore ionomycin (1 µM for 30 min), hyperosmotic shock (addition of 550 mM sucrose for 2 hours) or energy depletion (removal of glucose for 12 hours). Phosphatidylserine exposing erythrocytes were identified by annexin V binding, cell volume estimated from forward scatter in FACS analysis and adhesion to human umbilical vein endothelial cells (HUVEC) utilizing a flow chamber. As a result, ionomycin, sucrose addition and glucose removal all triggered phosphatidylserine-exposure, decreased forward scatter and enhanced adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC), effects significantly more pronounced in anx7(-/-) than in anx7(+/+)-erythrocytes. Following ischemia, morphological renal injury was significantly higher in anx7(-/-) than in anx7(+/+)-mice. The present observations demonstrate that enhanced eryptosis of annexin7 deficient cells is paralleled by increased adhesion of erythrocytes to the vascular wall, an effect, which may impact on microcirculation during ischemia.


Sphingomyelinase dependent apoptosis of dendritic cells following treatment with amyloid peptides.

  • Nguyen Thi Xuan‎ et al.
  • Journal of neuroimmunology‎
  • 2010‎

Amyloid peptides are formed during inflammation and modify the function of immune cells. The present study explored the effect of amyloid beta-peptide (Abeta(1-42)) and islet amyloid polypeptide (IAPP) on bone marrow derived dendritic cells (DCs). DCs were treated with Abeta(1-42) or IAPP with subsequent assessment of ceramide formation, caspase 8 and 3 activity, DNA fragmentation and phosphatidylserine exposure. In addition, TNFalpha secretion was assessed in lypopolysaccharide (LPS)-stimulated Abeta(1-42)- or IAPP-treated DCs. Within 24h Abeta(1-42) and IAPP triggered ceramide formation, caspase 8 and caspase 3 activation, DNA fragmentation and annexin V binding in DCs obtained from wild type mice, whereas in DCs from sphingomyelinase deficient (asm(-/-)) mice and in wild type DCs treated with sphingomyelinase inhibitor amitriptyline all these effects were strongly impaired. Moreover, ceramide formation was also reduced in wild type DCs in which acid sphingomyelinase (Asm) was silenced with Asm-targeted siRNA. Finally, Abeta(1-42) and IAPP treatment was further followed by a decline of TNFalpha formation in wild type DCs. In conclusion, amyloid peptides induce DC apoptosis presumably through activation of acid sphingomyelinase resulting in production of ceramide.


Phylogenetic nomenclature and evolution of mannose-binding lectin (MBL2) haplotypes.

  • Angelica B W Boldt‎ et al.
  • BMC genetics‎
  • 2010‎

Polymorphisms of the mannose-binding lectin gene (MBL2) affect the concentration and functional efficiency of the protein. We recently used haplotype-specific sequencing to identify 23 MBL2 haplotypes, associated with enhanced susceptibility to several diseases.


Mitochondria are not required for death receptor-mediated cytosolic acidification during apoptosis.

  • Michaela Waibel‎ et al.
  • Apoptosis : an international journal on programmed cell death‎
  • 2007‎

In addition to cell shrinkage, membrane blebbing, DNA fragmentation and phosphatidylserine exposure, intracellular acidification represents a hallmark of apoptosis. Although the mechanisms underlying cytosolic acidification during apoptosis remained largely elusive, a pivotal role of mitochondria has been proposed. In order to investigate the involvement of mitochondria in cytosolic acidification during apoptosis, we blocked the mitochondrial death pathway by overexpression of Bcl-2 and subsequently activated the death receptor pathway by anti-CD95 or TRAIL or the mitochondrial pathway by staurosporine. We show that Bcl-2 but not caspase inhibition prevented staurosporine-induced intracellular acidification. Thus, intracellular acidification in mitochondrial apoptosis is a Bcl-2-inhibitable, but caspase-independent process. In contrast, Bcl-2 only slightly delayed, but did not prevent intracellular acidification upon triggering of death receptors. The Na(+)/H(+) exchanger NHE1 was partially degraded during apoptosis but only to a small extent and and at a delayed time point when cytosolic acidification was almost completed. We therefore conclude that cytosolic acidification is mitochondrially controlled in response to mitochondria-dependent death stimuli, but requires additional caspase-dependent mechanisms during death receptor-mediated apoptosis.


Epigallocatechin-3-gallate (EGCG) up-regulates miR-15b expression thus attenuating store operated calcium entry (SOCE) into murine CD4+ T cells and human leukaemic T cell lymphoblasts.

  • Shaqiu Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

CD4+ T cells are key elements in immune responses and inflammation. Activation of T cell receptors in CD4+ T cells triggers cytosolic Ca2+ release with subsequent store operated Ca2+ entry (SOCE), which is accomplished by the pore forming Ca2+ release activated Ca2+ (CRAC) channel Orai1 and its regulator stromal cell-interaction molecule 2 (STIM2). Green tea polyphenol epigallocatechin-3-gallate (EGCG) acts as a potent anti-inflammatory and anti-oxidant agent for various types of cells including immune cells. However, how post-transcriptional gene regulators such as miRNAs are involved in the regulation of Ca2+ influx into murine CD4+ T cells and human Jurkat T cells through EGCG is not defined. EGCG treatment of murine CD4+ T cells significantly down-regulated the expression of STIM2 and Orai1 both at mRNA and protein levels. Furthermore, EGCG significantly decreased SOCE in both murine and human T cells. EGCG treatment increased miRNA-15b (miR-15b) abundance in both murine and human T cells. Bioinformatics analysis reveals that miR-15b, which has a STIM2 binding site, is involved in the down-regulation of SOCE. Overexpression of miR-15b significantly decreased the mRNA and protein expression of STIM2 and Orai1 in murine T cells. Treatment of Jurkat T cells with 10 μM EGCG further decreased mTOR and PTEN protein levels. EGCG decreased mitochondrial membrane potential (MMP) in both human and murine T cells. In conclusion, the observations suggest that EGCG inhibits the Ca2+ entry into murine and human T cells, an effect accomplished at least in part by up-regulation of miR-15b.


Do KV 7.1 channels contribute to control of arterial vascular tone?

  • Dmitry Tsvetkov‎ et al.
  • British journal of pharmacology‎
  • 2017‎

KV 7.1 voltage-gated potassium channels are expressed in vascular smooth muscle cells (VSMC) of diverse arteries, including mesenteric arteries. Based on pharmacological evidence using R-L3 (KV 7.1 channel opener), HMR1556, chromanol 293B (KV 7.1 channel blockers), stimulation of these channels has been suggested to evoke profound relaxation in various vascular beds of rats. However, the specificity of these drugs in vivo is uncertain.


Involvement Of Vascular Aldosterone Synthase In Phosphate-Induced Osteogenic Transformation Of Vascular Smooth Muscle Cells.

  • Ioana Alesutan‎ et al.
  • Scientific reports‎
  • 2017‎

Vascular calcification resulting from hyperphosphatemia is a major determinant of mortality in chronic kidney disease (CKD). Vascular calcification is driven by aldosterone-sensitive osteogenic transformation of vascular smooth muscle cells (VSMCs). We show that even in absence of exogenous aldosterone, silencing and pharmacological inhibition (spironolactone, eplerenone) of the mineralocorticoid receptor (MR) ameliorated phosphate-induced osteo-/chondrogenic transformation of primary human aortic smooth muscle cells (HAoSMCs). High phosphate concentrations up-regulated aldosterone synthase (CYP11B2) expression in HAoSMCs. Silencing and deficiency of CYP11B2 in VSMCs ameliorated phosphate-induced osteogenic reprogramming and calcification. Phosphate treatment was followed by nuclear export of APEX1, a CYP11B2 transcriptional repressor. APEX1 silencing up-regulated CYP11B2 expression and stimulated osteo-/chondrogenic transformation. APEX1 overexpression blunted the phosphate-induced osteo-/chondrogenic transformation and calcification of HAoSMCs. Cyp11b2 expression was higher in aortic tissue of hyperphosphatemic klotho-hypomorphic (kl/kl) mice than in wild-type mice. In adrenalectomized kl/kl mice, spironolactone treatment still significantly ameliorated aortic osteoinductive reprogramming. Our findings suggest that VSMCs express aldosterone synthase, which is up-regulated by phosphate-induced disruption of APEX1-dependent gene suppression. Vascular CYP11B2 may contribute to stimulation of VSMCs osteo-/chondrogenic transformation during hyperphosphatemia.


Modulation of the activity of N-methyl-d-aspartate receptors as a novel treatment option for depression: current clinical evidence and therapeutic potential of rapastinel (GLYX-13).

  • Andrei-Nicolae Vasilescu‎ et al.
  • Neuropsychiatric disease and treatment‎
  • 2017‎

Classical monoaminergic antidepressants show several disadvantages, such as protracted onset of therapeutic action. Conversely, the fast and sustained antidepressant effect of the N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine raises vast interest in understanding the role of the glutamate system in mood disorders. Indeed, numerous data support the existence of glutamatergic dysfunction in major depressive disorder (MDD). Drawback to this short-latency therapy is its side effect profile, especially the psychotomimetic action, which seriously hampers the common and widespread clinical use of ketamine. Therefore, there is a substantial need for alternative glutamatergic antidepressants with milder side effects. In this article, we review evidence that implicates NMDARs in the prospective treatment of MDD with focus on rapastinel (formerly known as GLYX-13), a novel synthetic NMDAR modulator with fast antidepressant effect, which acts by enhancing NMDAR function as opposed to blocking it. We summarize and discuss current clinical and animal studies regarding the therapeutic potential of rapastinel not only in MDD but also in other psychiatric disorders, such as obsessive-compulsive disorder and posttraumatic stress disorder. Additionally, we discuss current data concerning the molecular mechanisms underlying the antidepressant effect of rapastinel, highlighting common aspects as well as differences to ketamine. In 2016, rapastinel received the Breakthrough Therapy designation for the treatment of MDD from the US Food and Drug Administration, representing one of the most promising alternative antidepressants under current investigation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: