Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Transcriptional maturation of the mouse auditory forebrain.

  • Troy A Hackett‎ et al.
  • BMC genomics‎
  • 2015‎

The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well.


Multisensory perception reflects individual differences in processing temporal correlations.

  • Aaron R Nidiffer‎ et al.
  • Scientific reports‎
  • 2018‎

Sensory signals originating from a single event, such as audiovisual speech, are temporally correlated. Correlated signals are known to facilitate multisensory integration and binding. We sought to further elucidate the nature of this relationship, hypothesizing that multisensory perception will vary with the strength of audiovisual correlation. Human participants detected near-threshold amplitude modulations in auditory and/or visual stimuli. During audiovisual trials, the frequency and phase of auditory modulations were varied, producing signals with a range of correlations. After accounting for individual differences which likely reflect relative unisensory temporal characteristics in participants, we found that multisensory perception varied linearly with strength of correlation. Diffusion modelling confirmed this and revealed that stimulus correlation is supplied to the decisional system as sensory evidence. These data implicate correlation as an important cue in audiovisual feature integration and binding and suggest correlational strength as an important factor for flexibility in these processes.


Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system.

  • Pooja Balaram‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2013‎

Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006).


Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions.

  • Lisa A de la Mothe‎ et al.
  • The Journal of comparative neurology‎
  • 2006‎

In this study and its companion, the cortical and subcortical connections of the medial belt region of the marmoset monkey auditory cortex were compared with the core region. The main objective was to document anatomical features that account for functional differences observed between areas. Injections of retrograde and bi-directional anatomical tracers targeted two core areas (A1 and R), and two medial belt areas (rostromedial [RM] and caudomedial [CM]). Topographically distinct patterns of connections were revealed among subdivisions of the medial geniculate complex (MGC) and multisensory thalamic nuclei, including the suprageniculate (Sg), limitans (Lim), medial pulvinar (PM), and posterior nucleus (Po). The dominant thalamic projection to the CM was the anterior dorsal division (MGad) of the MGC, whereas the posterior dorsal division (MGpd) targeted RM. CM also had substantial input from multisensory nuclei, especially the magnocellular division (MGm) of the MGC. RM had weak multisensory connections. Corticotectal projections of both RM and CM targeted the dorsomedial quadrant of the inferior colliculus, whereas the CM projection also included a pericentral extension around the ventromedial and lateral portion of the central nucleus. Areas A1 and R were characterized by focal topographic connections within the ventral division (MGv) of the MGC, reflecting the tonotopic organization of both core areas. The results indicate that parallel subcortical pathways target the core and medial belt regions and that RM and CM represent functionally distinct areas within the medial belt auditory cortex.


Regional and laminar distribution of the vesicular glutamate transporter, VGluT2, in the macaque monkey auditory cortex.

  • Troy A Hackett‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2009‎

The auditory cortex of primates contains 13 areas distributed among 3 hierarchically connected regions: core, belt, and parabelt. Thalamocortical inputs arise in parallel from four divisions of the medial geniculate complex (MGC), which have regionally distinct projection patterns. These inputs terminate in layers IIIb and/or IV, and are assumed to be glutamatergic, although this has not been verified. In the present study, immunoreactivity (-ir) for the vesicular glutamate transporter, VGluT2, was used to estimate the regional and laminar distribution of the glutamatergic thalamocortical projection in the macaque auditory cortex. Coronal sections containing auditory cortex were processed for VGluT2 and other markers concentrated in the thalamorecipient layers: cytochrome oxidase, acetylcholinesterase, and parvalbumin. Marker expression was studied with wide field and confocal microscopy. The main findings were: (1) VGluT2-ir was highest in the core, intermediate in the belt, and sparse in the parabelt; (2) VGluT2-ir was concentrated in the neuropil of layers IIIb/IV in the core and layer IIIb in the belt; (3) VGluT2-ir matched regional and laminar expression of the other chemoarchitectonic markers. The results indicate that the glutamatergic thalamic projection to auditory cortex, as indexed by VGluT2-ir, varies along the core-belt-parabelt axis in a manner that matches the gradients of other markers. These chemoarchitectonic features are likely to subserve regional differences in neuronal activity between regions of auditory cortex.


Multisensory convergence in auditory cortex, I. Cortical connections of the caudal superior temporal plane in macaque monkeys.

  • John F Smiley‎ et al.
  • The Journal of comparative neurology‎
  • 2007‎

The caudal medial auditory area (CM) has anatomical and physiological features consistent with its role as a first-stage (or "belt") auditory association cortex. It is also a site of multisensory convergence, with robust somatosensory and auditory responses. In this study, we investigated the cerebral cortical sources of somatosensory and auditory inputs to CM by injecting retrograde tracers in macaque monkeys. A companion paper describes the thalamic connections of CM (Hackett et al., J. Comp. Neurol. [this issue]). The likely cortical sources of somatosensory input to CM were the adjacent retroinsular cortex (area Ri) and granular insula (Ig). In addition, CM had reliable connections with areas Tpt and TPO, which are sites of multisensory integration. CM also had topographic connections with other auditory areas. As expected, connections with adjacent caudal auditory areas were stronger than connections with rostral areas. Surprisingly, the connections with the core were concentrated along its medial side, suggesting that there may be a medial-lateral division of function within the core. Additional injections into caudal lateral auditory area (CL) and Tpt showed similar connections with Ri, Ig, and TPO. In contrast to CM injections, these lateral injections had inputs from parietal area 7a and had a preferential connection with the lateral (gyral) part of Tpt. Taken together, the findings indicate that CM may receive somatosensory input from nearby areas along the fundus of the lateral sulcus. The differential connections of CM compared with adjacent areas provide additional evidence for the functional specialization of the individual auditory belt areas.


Nicotinic Receptor Subunit Distribution in Auditory Cortex: Impact of Aging on Receptor Number and Function.

  • Madan Ghimire‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2020‎

The presence of novel or degraded communication sounds likely results in activation of basal forebrain cholinergic neurons increasing release of ACh onto presynaptic and postsynaptic nAChRs in primary auditory cortex (A1). nAChR subtypes include high-affinity heteromeric nAChRs commonly composed of α4 and β2 subunits and low-affinity homomeric nAChRs composed of α7 subunits. In young male FBN rats, we detail the following: (1) the distribution/expression of nAChR subunit transcripts in excitatory (VGluT1) and inhibitory (VGAT) neurons across A1 layers; (2) heteromeric nAChR binding across A1 layers; and (3) nAChR excitability in A1 layer (L) 5 cells. In aged rats, we detailed the impact of aging on A1 nAChR subunit expression across layers, heteromeric nAChR receptor binding, and nAChR excitability of A1 L5 cells. A majority of A1 cells coexpressed transcripts for β2 and α4 with or without α7, while dispersed subpopulations expressed β2 and α7 or α7 alone. nAChR subunit transcripts were expressed in young excitatory and inhibitory neurons across L2-L6. Transcript abundance varied across layers, and was highest for β2 and α4. Significant age-related decreases in nAChR subunit transcript expression (message) and receptor binding (protein) were observed in L2-6, most pronounced in infragranular layers. In vitro patch-clamp recordings from L5B pyramidal output neurons showed age-related nAChR subunit-selective reductions in postsynaptic responses to ACh. Age-related losses of nAChR subunits likely impact ways in which A1 neurons respond to ACh release. While the elderly require additional resources to disambiguate degraded speech codes, resources mediated by nAChRs may be compromised with aging.SIGNIFICANCE STATEMENT When attention is required, cholinergic basal forebrain neurons may trigger increased release of ACh onto auditory neurons in primary auditory cortex (A1). Laminar and phenotypic differences in neuronal nAChR expression determine ways in which A1 neurons respond to release of ACh in challenging acoustic environments. This study detailed the distribution and expression of nAChR subunit transcript and protein across A1 layers in young and aged rats. Results showed a differential distribution of nAChR subunits across A1 layers. Age-related decreases in transcript/protein expression were reflected in age-related subunit specific functional loss of nAChR signaling to ACh application in A1 layer 5. Together, these findings could reflect the age-related decline in selective attention observed in the elderly.


VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway.

  • Troy A Hackett‎ et al.
  • Hearing research‎
  • 2011‎

The vesicular glutamate transporters (VGLUTs) regulate the storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in the cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in the cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In the auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II-VI of the core, belt and parabelt regions. VGLUT2 was expressed most strongly by neurons in layers IIIb and IV, weakly by neurons in layers II-IIIa, and at very low levels in layers V-VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of the cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in the auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in corticocortical (CC) and corticothalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establish a baseline for detailed studies of these transporters in selected circuits of the auditory system.


Spatial and temporal disparity in signals and maskers affects signal detection in non-human primates.

  • Francesca Rocchi‎ et al.
  • Hearing research‎
  • 2017‎

Detection thresholds for auditory stimuli (signals) increase in the presence of maskers. Natural environments contain maskers/distractors that can have a wide range of spatiotemporal properties relative to the signal. While these parameters have been well explored psychophysically in humans, they have not been well explored in animal models, and their neuronal underpinnings are not well understood. As a precursor to the neuronal measurements, we report the effects of systematically varying the spatial and temporal relationship between signals and noise in macaque monkeys (Macaca mulatta and Macaca radiata). Macaques detected tones masked by noise in a Go/No-Go task in which the spatiotemporal relationships between the tone and noise were systematically varied. Masked thresholds were higher when the masker was continuous or gated on and off simultaneously with the signal, and lower when the continuous masker was turned off during the signal. A burst of noise caused higher masked thresholds if it completely temporally overlapped with the signal, whereas partial overlap resulted in lower thresholds. Noise durations needed to be at least 100 ms before significant masking could be observed. Thresholds for short duration tones were significantly higher when the onsets of signal and masker coincided compared to when the signal was presented during the steady state portion of the noise (overshoot). When signal and masker were separated in space, masked signal detection thresholds decreased relative to when the masker and signal were co-located (spatial release from masking). Masking release was larger for azimuthal separations than for elevation separations. These results in macaques are similar to those observed in humans, suggesting that the specific spatiotemporal relationship between signal and masker determine threshold in natural environments for macaques in a manner similar to humans. These results form the basis for future investigations of neuronal correlates and mechanisms of masking.


Adenosine A1 Receptor mRNA Expression by Neurons and Glia in the Auditory Forebrain.

  • Troy A Hackett‎
  • Anatomical record (Hoboken, N.J. : 2007)‎
  • 2018‎

In the brain, purines such as ATP and adenosine can function as neurotransmitters and co-transmitters, or serve as signals in neuron-glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1 R). In the auditory forebrain, restriction of A1 R-adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1 R-mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1 R transcripts (Adora1), based on co-expression with cell-specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1 R-mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1 R-adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here. Anat Rec, 301:1882-1905, 2018. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Changes in audiometric threshold and frequency selectivity correlate with cochlear histopathology in macaque monkeys with permanent noise-induced hearing loss.

  • Jane A Burton‎ et al.
  • Hearing research‎
  • 2020‎

Exposure to loud noise causes damage to the inner ear, including but not limited to outer and inner hair cells (OHCs and IHCs) and IHC ribbon synapses. This cochlear damage impairs auditory processing and increases audiometric thresholds (noise-induced hearing loss, NIHL). However, the exact relationship between the perceptual consequences of NIHL and its underlying cochlear pathology are poorly understood. This study used a nonhuman primate model of NIHL to relate changes in frequency selectivity and audiometric thresholds to indices of cochlear histopathology. Three macaques (one Macaca mulatta and two Macaca radiata) were trained to detect tones in quiet and in noises that were spectrally notched around the tone frequency. Audiograms were derived from tone thresholds in quiet; perceptual auditory filters were derived from tone thresholds in notched-noise maskers using the rounded-exponential fit. Data were obtained before and after a four-hour exposure to a 50-Hz noise centered at 2 kHz at 141 or 146 dB SPL. Noise exposure caused permanent audiometric threshold shifts and broadening of auditory filters at and above 2 kHz, with greater changes observed for the 146-dB-exposed monkeys. The normalized bandwidth of the perceptual auditory filters was strongly correlated with audiometric threshold at each tone frequency. While changes in audiometric threshold and perceptual auditory filter widths were primarily determined by the extent of OHC survival, additional variability was explained by including interactions among OHC, IHC, and ribbon synapse survival. This is the first study to provide within-subject comparisons of auditory filter bandwidths in an animal model of NIHL and correlate these NIHL-related perceptual changes with cochlear histopathology. These results expand the foundations for ongoing investigations of the neural correlates of NIHL-related perceptual changes.


Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward.

  • India A Reddy‎ et al.
  • PLoS biology‎
  • 2018‎

The gut-to-brain axis exhibits significant control over motivated behavior. However, mechanisms supporting this communication are poorly understood. We reveal that a gut-based bariatric surgery chronically elevates systemic bile acids and attenuates cocaine-induced elevations in accumbal dopamine. Notably, this surgery reduces reward-related behavior and psychomotor sensitization to cocaine. Utilizing a knockout mouse model, we have determined that a main mediator of these post-operative effects is the Takeda G protein-coupled bile acid receptor (TGR5). Viral restoration of TGR5 in the nucleus accumbens of TGR5 knockout animals is sufficient to restore cocaine reward, centrally localizing this TGR5-mediated modulation. These findings define TGR5 and bile acid signaling as pharmacological targets for the treatment of cocaine abuse and reveal a novel mechanism of gut-to-brain communication.


Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model.

  • Troy A Hackett‎ et al.
  • Frontiers in neuroscience‎
  • 2014‎

Our working model of the primate auditory cortex recognizes three major regions (core, belt, parabelt), subdivided into thirteen areas. The connections between areas are topographically ordered in a manner consistent with information flow along two major anatomical axes: core-belt-parabelt and caudal-rostral. Remarkably, most of the connections supporting this model were revealed using retrograde tracing techniques. Little is known about laminar circuitry, as anterograde tracing of axon terminations has rarely been used. The purpose of the present study was to examine the laminar projections of three areas of auditory cortex, pursuant to analysis of all areas. The selected areas were: middle lateral belt (ML); caudomedial belt (CM); and caudal parabelt (CPB). Injections of anterograde tracers yielded data consistent with major features of our model, and also new findings that compel modifications. Results supporting the model were: (1) feedforward projection from ML and CM terminated in CPB; (2) feedforward projections from ML and CPB terminated in rostral areas of the belt and parabelt; and (3) feedback projections typified inputs to the core region from belt and parabelt. At odds with the model was the convergence of feedforward inputs into rostral medial belt from ML and CPB. This was unexpected since CPB is at a higher stage of the processing hierarchy, with mainly feedback projections to all other belt areas. Lastly, extending the model, feedforward projections from CM, ML, and CPB overlapped in the temporal parietal occipital area (TPO) in the superior temporal sulcus, indicating significant auditory influence on sensory processing in this region. The combined results refine our working model and highlight the need to complete studies of the laminar inputs to all areas of auditory cortex. Their documentation is essential for developing informed hypotheses about the neurophysiological influences of inputs to each layer and area.


Desensitizing nicotinic agents normalize tinnitus-related inhibitory dysfunction in the auditory cortex and ameliorate behavioral evidence of tinnitus.

  • Madan Ghimire‎ et al.
  • Frontiers in neuroscience‎
  • 2023‎

Tinnitus impacts between 10-20% of the population. Individuals most troubled by their tinnitus have their attention bound to and are distracted by, their tinnitus percept. While numerous treatments to ameliorate tinnitus have been tried, no therapeutic approach has been clinically accepted. The present study used an established condition-suppression noise-exposure rat model of tinnitus to: (1) examine tinnitus-related changes in nAChR function of layer 5 pyramidal (PNs) and of vasoactive intestinal peptide (VIP) neurons in primary auditory cortex (A1) and (2) examine how the partial desensitizing nAChR agonists, sazetidine-A and varenicline, can act as potential therapeutic agents in the treatment of tinnitus. We posited that tinnitus-related changes in layer 5 nAChR responses may underpin the decline in attentional resources previously observed in this animal model (Brozoski et al., 2019). In vitro whole-cell patch-clamp studies previously revealed a significant tinnitus-related loss in nAChR-evoked excitatory postsynaptic currents from A1 layer 5 PNs. In contrast, VIP neurons from animals with behavioral evidence of tinnitus showed significantly increased nAChR-evoked excitability. Here we hypothesize that sazetidine-A and varenicline have therapeutic benefits for subjects who cannot divert their attention away from the phantom sound in their heads. We found that sazetidine-A or varenicline normalized tinnitus-related reductions in GABAergic input currents onto A1 layer 5 PNs. We then tested sazetidine-A and varenicline for the management of tinnitus using our tinnitus animal model. Subcutaneous injection of sazetidine-A or varenicline, 1 h prior to tinnitus testing, significantly decreased the rat's behavioral evidence of tinnitus in a dose-dependent manner. Collectively, these results support the need for additional clinical investigations of partial desensitizing nAChR agonists sazetidine-A and varenicline for the treatment of tinnitus.


lncRNA expression in the auditory forebrain during postnatal development.

  • Yan Guo‎ et al.
  • Gene‎
  • 2016‎

The biological processes governing brain development and maturation depend on complex patterns of gene and protein expression, which can be influenced by many factors. One of the most overlooked is the long noncoding class of RNAs (lncRNAs), which are known to play important regulatory roles in an array of biological processes. Little is known about the distribution of lncRNAs in the sensory systems of the brain, and how lncRNAs interact with other mechanisms to guide the development of these systems. In this study, we profiled lncRNA expression in the mouse auditory forebrain during postnatal development at time points before and after the onset of hearing (P7, P14, P21, adult). First, we generated lncRNA profiles of the primary auditory cortex (A1) and medial geniculate body (MG) at each age. Then, we determined the differential patterns of expression by brain region and age. These analyses revealed that the lncRNA expression profile was distinct between both brain regions and between each postnatal age, indicating spatial and temporal specificity during maturation of the auditory forebrain. Next, we explored potential interactions between functionally-related lncRNAs, protein coding RNAs (pcRNAs), and associated proteins. The maturational trajectories (P7 to adult) of many lncRNA - pcRNA pairs were highly correlated, and predictive analyses revealed that lncRNA-protein interactions tended to be strong. A user-friendly database was constructed to facilitate inspection of the expression levels and maturational trajectories for any lncRNA or pcRNA in the database. Overall, this study provides an in-depth summary of lncRNA expression in the developing auditory forebrain and a broad-based foundation for future exploration of lncRNA function during brain development.


A Distributed Network for Social Cognition Enriched for Oxytocin Receptors.

  • Mariela Mitre‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2016‎

Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent-infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition.


Frequency selectivity in macaque monkeys measured using a notched-noise method.

  • Jane A Burton‎ et al.
  • Hearing research‎
  • 2018‎

The auditory system is thought to process complex sounds through overlapping bandpass filters. Frequency selectivity as estimated by auditory filters has been well quantified in humans and other mammalian species using behavioral and physiological methodologies, but little work has been done to examine frequency selectivity in nonhuman primates. In particular, knowledge of macaque frequency selectivity would help address the recent controversy over the sharpness of cochlear tuning in humans relative to other animal species. The purpose of our study was to investigate the frequency selectivity of macaque monkeys using a notched-noise paradigm. Four macaques were trained to detect tones in noises that were spectrally notched symmetrically and asymmetrically around the tone frequency. Masked tone thresholds decreased with increasing notch width. Auditory filter shapes were estimated using a rounded exponential function. Macaque auditory filters were symmetric at low noise levels and broader and more asymmetric at higher noise levels with broader low-frequency and steeper high-frequency tails. Macaque filter bandwidths (BW3dB) increased with increasing center frequency, similar to humans and other species. Estimates of equivalent rectangular bandwidth (ERB) and filter quality factor (QERB) suggest macaque filters are broader than human filters. These data shed further light on frequency selectivity across species and serve as a baseline for studies of neuronal frequency selectivity and frequency selectivity in subjects with hearing loss.


Auditory Corticothalamic Neurons Are Recruited by Motor Preparatory Inputs.

  • Kameron K Clayton‎ et al.
  • Current biology : CB‎
  • 2021‎

Corticothalamic (CT) neurons comprise the largest component of the descending sensory corticofugal pathway, but their contributions to brain function and behavior remain an unsolved mystery. To address the hypothesis that layer 6 (L6) CTs may be activated by extra-sensory inputs prior to anticipated sounds, we performed optogenetically targeted single-unit recordings and two-photon imaging of Ntsr1-Cre+ L6 CT neurons in the primary auditory cortex (A1) while mice were engaged in an active listening task. We found that L6 CTs and other L6 units began spiking hundreds of milliseconds prior to orofacial movements linked to sound presentation and reward, but not to other movements such as locomotion, which were not linked to an explicit behavioral task. Rabies tracing of monosynaptic inputs to A1 L6 CT neurons revealed a narrow strip of cholinergic and non-cholinergic projection neurons in the external globus pallidus, suggesting a potential source of motor-related input. These findings identify new pathways and local circuits for motor modulation of sound processing and suggest a new role for CT neurons in active sensing.


Correlations between cochlear pathophysiology and behavioral measures of temporal and spatial processing in noise exposed macaques.

  • Chase A Mackey‎ et al.
  • Hearing research‎
  • 2021‎

Noise-induced hearing loss (NIHL) is known to have significant consequences for temporal, spectral, and spatial resolution. However, much remains to be discovered about their underlying pathophysiology. This report extends the recent development of a nonhuman primate model of NIHL to explore its consequences for hearing in noisy environments, and its correlations with the underlying cochlear pathology. Ten macaques (seven with normal-hearing, three with NIHL) were used in studies of masked tone detection in which the temporal or spatial properties of the masker were varied to assess metrics of temporal and spatial processing. Normal-hearing (NH) macaques showed lower tone detection thresholds for sinusoidally amplitude modulated (SAM) broadband noise maskers relative to unmodulated maskers (modulation masking release, MMR). Tone detection thresholds were lowest at low noise modulation frequencies, and increased as modulation frequency increased, until they matched threshold in unmodulated noise. NH macaques also showed lower tone detection thresholds for spatially separated tone and noise relative to co-localized tone and noise (spatial release from masking, SRM). Noise exposure caused permanent threshold shifts that were verified behaviorally and audiologically. In hearing-impaired (HI) macaques, MMR was reduced at tone frequencies above that of the noise exposure. HI macaques also showed degraded SRM, with no SRM observed across all tested tone frequencies. Deficits in MMR correlated with audiometric threshold changes, outer hair cell loss, and synapse loss, while the differences in SRM did not correlate with audiometric changes, or any measure of cochlear pathophysiology. This difference in anatomical-behavioral correlations suggests that while many behavioral deficits may arise from cochlear pathology, only some are predictable from the frequency place of damage in the cochlea.


Hierarchical differences in the encoding of sound and choice in the subcortical auditory system.

  • Chase A Mackey‎ et al.
  • Journal of neurophysiology‎
  • 2023‎

Detection of sounds is a fundamental function of the auditory system. Although studies of auditory cortex have gained substantial insight into detection performance using behaving animals, previous subcortical studies have mostly taken place under anesthesia, in passively listening animals, or have not measured performance at threshold. These limitations preclude direct comparisons between neuronal responses and behavior. To address this, we simultaneously measured auditory detection performance and single-unit activity in the inferior colliculus (IC) and cochlear nucleus (CN) in macaques. The spontaneous activity and response variability of CN neurons were higher than those observed for IC neurons. Signal detection theoretic methods revealed that the magnitude of responses of IC neurons provided more reliable estimates of psychometric threshold and slope compared with the responses of single CN neurons. However, pooling small populations of CN neurons provided reliable estimates of psychometric threshold and slope, suggesting sufficient information in CN population activity. Trial-by-trial correlations between spike count and behavioral response emerged 50-75 ms after sound onset for most IC neurons, but for few neurons in the CN. These results highlight hierarchical differences between neurometric-psychometric correlations in CN and IC and have important implications for how subcortical information could be decoded.NEW & NOTEWORTHY The cerebral cortex is widely recognized to play a role in sensory processing and decision-making. Accounts of the neural basis of auditory perception and its dysfunction are based on this idea. However, significantly less attention has been paid to midbrain and brainstem structures in this regard. Here, we find that subcortical auditory neurons represent stimulus information sufficient for detection and predict behavioral choice on a trial-by-trial basis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: