Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing.

  • César Nombela-Arrieta‎ et al.
  • Immunity‎
  • 2004‎

Chemokines guide lymphocytes from blood to secondary lymphoid organs by triggering integrin-dependent firm adhesion under vascular flow and directed migration of T and B lymphocytes within lymphoid tissue. Here, we analyze the roles of DOCK2, a mammalian homolog of Caenorhabditis elegans CED-5 and Drosophila melanogaster Myoblast City, and phosphoinositide-3-kinase (PI3K) during lymphocyte recirculation. DOCK2 mediated efficient lymphocyte migration in a largely PI3K-independent manner, although a minor, PI3K-dependent pathway for migration was observed in wild-type and DOCK2-deficient lymphocytes. In T cells, this residual migration depended mainly on PI3Kgamma, whereas other PI3K isoforms were implicated in B cells. In vitro adhesion assays and intravital microscopy of lymphoid organ vasculature uncovered an unexpected defect in integrin activation in DOCK2-/- B cells, whereas lack of DOCK2 did not affect chemokine-triggered integrin activation in T cells. DOCK2 and PI3Kgamma thus play distinct roles during T and B cell integrin activation and migration.


Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse.

  • Audrey Le Floc'h‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

The immunological synapse formed by a T lymphocyte on the surface of a target cell contains a peripheral ring of filamentous actin (F-actin) that promotes adhesion and facilitates the directional secretion of cytokines and cytolytic factors. We show that growth and maintenance of this F-actin ring is dictated by the annular accumulation of phosphatidylinositol trisphosphate (PIP3) in the synaptic membrane. PIP3 functions in this context by recruiting the exchange factor Dock2 to the periphery of the synapse, where it drives actin polymerization through the Rho-family GTPase Rac. We also show that synaptic PIP3 is generated by class IA phosphoinositide 3-kinases that associate with T cell receptor microclusters and are activated by the GTPase Ras. Perturbations that inhibit or promote PIP3-dependent F-actin remodeling dramatically affect T cell cytotoxicity, demonstrating the functional importance of this pathway. These results reveal how T cells use lipid-based signaling to control synaptic architecture and modulate effector responses.


Axl phosphorylates Elmo scaffold proteins to promote Rac activation and cell invasion.

  • Afnan Abu-Thuraia‎ et al.
  • Molecular and cellular biology‎
  • 2015‎

The receptor tyrosine kinase Axl contributes to cell migration and invasion. Expression of Axl correlates with metastatic progression in cancer patients, yet the specific signaling events promoting invasion downstream of Axl are poorly defined. Herein, we report Elmo scaffolds to be direct substrates and binding partners of Axl. Elmo proteins are established to interact with Dock family guanine nucleotide exchange factors to control Rac-mediated cytoskeletal dynamics. Proteomics and mutagenesis studies reveal that Axl phosphorylates Elmo1/2 on a conserved carboxyl-terminal tyrosine residue. Upon Gas6-dependent activation of Axl, endogenous Elmo2 becomes phosphorylated on Tyr-713 and enters into a physical complex with Axl in breast cancer cells. Interfering with Elmo2 expression prevented Gas6-induced Rac1 activation in breast cancer cells. Similarly to blocking of Axl, Elmo2 knockdown or pharmacological inhibition of Dock1 abolishes breast cancer cell invasion. Interestingly, Axl or Elmo2 knockdown diminishes breast cancer cell proliferation. Rescue of Elmo2 knockdown cells with the wild-type protein but not with Elmo2 harboring Tyr-713-Phe mutations restores cell invasion and cell proliferation. These results define a new mechanism by which Axl promotes cell proliferation and invasion and identifies inhibition of the Elmo-Dock pathway as a potential therapeutic target to stop Axl-induced metastases.


DOCK2 confers immunity and intestinal colonization resistance to Citrobacter rodentium infection.

  • Zhiping Liu‎ et al.
  • Scientific reports‎
  • 2016‎

Food poisoning is one of the leading causes of morbidity and mortality in the world. Citrobacter rodentium is an enteric pathogen which attaches itself to enterocytes and induces attachment and effacing (A/E) lesions. The ability of the bacterium to cause infection requires subversion of the host actin cytoskeleton. Rac-dependent actin polymerization is activated by a guanine nucleotide exchange factor known as Dedicator of cytokinesis 2 (DOCK2). However, the role of DOCK2 in infectious disease is largely unexplored. Here, we found that mice lacking DOCK2 were susceptible to C. rodentium infection. These mice harbored increased levels of C. rodentium bacteria, showed more pronounced weight loss and inflammation-associated pathology, and were prone to bacterial dissemination to the systemic organs compared with wild-type mice. We found that mice lacking DOCK2 were more susceptible to C. rodentium attachment to intestinal epithelial cells. Therefore, our results underscored an important role of DOCK2 for gastrointestinal immunity to C. rodentium infection.


Deletion of DOCK2, a regulator of the actin cytoskeleton in lymphocytes, suppresses cardiac allograft rejection.

  • Hongsi Jiang‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

Allograft rejection is induced by graft tissue infiltration of alloreactive T cells that are activated mainly in secondary lymphoid organs of the host. DOCK2 plays a critical role in lymphocyte homing and immunological synapse formation by regulating the actin cytoskeleton, yet its role in the in vivo immune response remains unknown. We show here that DOCK2 deficiency enables long-term survival of cardiac allografts across a complete mismatch of the major histocompatibility complex molecules. In DOCK2-deficient mice, alloreactivity and allocytotoxicity were suppressed significantly even after in vivo priming with alloantigens, which resulted in reduced intragraft expression of effector molecules, such as interferon-gamma, granzyme B, and perforin. This is mediated, at least in part, by preventing potentially alloreactive T cells from recruiting into secondary lymphoid organs. In addition, we found that DOCK2 is critical for CD28-mediated Rac activation and is required for the full activation of alloreactive T cells. Although DOCK2-deficient, alloreactive T cells were activated in vitro in the presence of exogenous interleukin-2, these T cells, when transferred adoptively, failed to infiltrate into the allografts that were transplanted into RAG1-deficient mice. Thus, DOCK2 deficiency attenuates allograft rejection by simultaneously suppressing multiple and key processes. We propose that DOCK2 could be a novel molecular target for controlling transplant rejection.


Dock2 participates in bone marrow lympho-hematopoiesis.

  • Tomoko Kikuchi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

Dock2 has been shown to be indispensable for chemotaxis of mature lymphocytes as a critical Rac activator. However, the functional expression of Dock2 in immature hematopoietic cells is unclear. In this study, we demonstrate that Dock2 is broadly expressed in bone marrow (BM) hematopoietic compartment, including hematopoietic stem/progenitor cell (HSC/HPC) fraction. Response of Dock2-/- HPCs to CXCL12 in chemotaxis and actin polymerization in vitro was impaired, although alpha4 integrin activation by CXCL12 was not altered. Myelosuppressive stress on HSCs in vivo, such as consecutive 5-FU administration and serial bone marrow transplantation, did not show hematopoietic defect in Dock2-/- mice. Long-term engraftment of transplanted Dock2-/- BM cells was severely impaired in competitive reconstitution. However, this was not intrinsic to HSCs but originated from the defective competition of Dock2-/- lymphoid precursors. These results suggest that Dock2 plays a significant role in BM lymphopoiesis, but is dispensable for HSC engraftment and self-renewal.


DOCK1 inhibition suppresses cancer cell invasion and macropinocytosis induced by self-activating Rac1P29S mutation.

  • Takahiro Tomino‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Rac1 is a member of the Rho family of small GTPases that regulates cytoskeletal reorganization, membrane polarization, cell migration and proliferation. Recently, a self-activating mutation of Rac1, Rac1P29S, has been identified as a recurrent somatic mutation frequently found in sun-exposed melanomas, which possesses increased inherent GDP/GTP exchange activity and cell transforming ability. However, the role of cellular Rac1-interacting proteins in the transforming potential of Rac1P29S remains unclear. We found that the catalytic domain of DOCK1, a Rac-specific guanine nucleotide exchange factor (GEF) implicated in malignancy of a variety of cancers, can greatly accelerate the GDP/GTP exchange of Rac1P29S. Enforced expression of Rac1P29S induced matrix invasion and macropinocytosis in wild-type (WT) mouse embryonic fibroblasts (MEFs), but not in DOCK1-deficient MEFs. Consistently, a selective inhibitor of DOCK1 that blocks its GEF function suppressed the invasion and macropinocytosis in WT MEFs expressing Rac1P29S. Human melanoma IGR-1 and breast cancer MDA-MB-157 cells harbor Rac1P29S mutation and express DOCK1 endogenously. Genetic inactivation and pharmacological inhibition of DOCK1 suppressed their invasion and macropinocytosis. Taken together, these results indicate that DOCK1 is a critical regulator of the malignant phenotypes induced by Rac1P29S, and suggest that targeting DOCK1 might be an effective approach to treat cancers associated with Rac1P29S mutation.


The AP-1 transcription factor JunB is required for Th17 cell differentiation.

  • Soh Yamazaki‎ et al.
  • Scientific reports‎
  • 2017‎

Interleukin (IL)-17-producing T helper (Th17) cells are crucial for host defense against extracellular microbes and pathogenesis of autoimmune diseases. Here we show that the AP-1 transcription factor JunB is required for Th17 cell development. Junb-deficient CD4+ T cells are able to develop in vitro into various helper T subsets except Th17. The RNA-seq transcriptome analysis reveals that JunB is crucial for the Th17-specific gene expression program. Junb-deficient mice are completely resistant to experimental autoimmune encephalomyelitis, a Th17-mediated inflammatory disease, and naive T helper cells from such mice fail to differentiate into Th17 cells. JunB appears to activate Th17 signature genes by forming a heterodimer with BATF, another AP-1 factor essential for Th17 differentiation. The mechanism whereby JunB controls Th17 cell development likely involves activation of the genes for the Th17 lineage-specifying orphan receptors RORγt and RORα and reduced expression of Foxp3, a transcription factor known to antagonize RORγt function.


Thymic epithelial cell-specific deletion of Jmjd6 reduces Aire protein expression and exacerbates disease development in a mouse model of autoimmune diabetes.

  • Toyoshi Yanagihara‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Thymic epithelial cells (TECs) establish spatially distinct microenvironments in which developing T cells are selected to mature or die. A unique property of medullary TECs is their expression of thousands of tissue-restricted self-antigens that is largely under the control of the transcriptional regulator Aire. We previously showed that Jmjd6, a lysyl hydroxylase for splicing regulatory proteins, is important for Aire protein expression and that transplantation of Jmjd6-deficient thymic stroma into athymic nude mice resulted in multiorgan autoimmunity. Here we report that TEC-specific deletion of Jmjd6 exacerbates development of autoimmune diabetes in a mouse model, which express both ovalbumin (OVA) under the control of the rat insulin gene promoter and OT-I T cell receptor specific for OVA peptide bound to major histocompatibility complex class I Kb molecules. We found that Aire protein expression in mTECs was reduced in the absence of Jmjd6, with retention of intron 2 in Aire transcripts. Our results thus demonstrate the importance of Jmjd6 in establishment of immunological tolerance in a more physiological setting.


Cholesterol sulfate limits neutrophil recruitment and gut inflammation during mucosal injury.

  • Kenji Morino‎ et al.
  • Frontiers in immunology‎
  • 2023‎

During mucosal injury, intestinal immune cells play a crucial role in eliminating invading bacteria. However, as the excessive accumulation of immune cells promotes inflammation and delays tissue repair, it is essential to identify the mechanism that limits the infiltration of immune cells to the mucosal-luminal interface. Cholesterol sulfate (CS) is the lipid product of the sulfotransferase SULT2B1 and suppresses immune reactions by inhibiting DOCK2-mediated Rac activation. In this study, we aimed to elucidate the physiological role of CS in the intestinal tract. We found that, in the small intestine and colon, CS is predominantly produced in the epithelial cells close to the lumen. While dextran sodium sulfate (DSS)-induced colitis was exacerbated in Sult2b1-deficient mice with increased prevalence of neutrophils, the elimination of either neutrophils or intestinal bacteria in Sult2b1-deficient mice attenuated disease development. Similar results were obtained when the Dock2 was genetically deleted in Sult2b1-deficient mice. In addition, we also show that indomethacin-induced ulcer formation in the small intestine was exacerbated in Sult2b1-deficient mice and was ameliorated by CS administration. Thus, our results uncover that CS acts on inflammatory neutrophils, and prevents excessive gut inflammation by inhibiting the Rac activator DOCK2. The administration of CS may be a novel therapeutic strategy for inflammatory bowel disease and non-steroidal anti-inflammatory drug-induced ulcers.


DOCK5 functions as a key signaling adaptor that links FcεRI signals to microtubule dynamics during mast cell degranulation.

  • Kana Ogawa‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

Mast cells play a key role in the induction of anaphylaxis, a life-threatening IgE-dependent allergic reaction, by secreting chemical mediators that are stored in secretory granules. Degranulation of mast cells is triggered by aggregation of the high-affinity IgE receptor, FcεRI, and involves dynamic rearrangement of microtubules. Although much is known about proximal signals downstream of FcεRI, the distal signaling events controlling microtubule dynamics remain elusive. Here we report that DOCK5, an atypical guanine nucleotide exchange factor (GEF) for Rac, is essential for mast cell degranulation. As such, we found that DOCK5-deficient mice exhibit resistance to systemic and cutaneous anaphylaxis. The Rac GEF activity of DOCK5 is surprisingly not required for mast cell degranulation. Instead, DOCK5 associated with Nck2 and Akt to regulate microtubule dynamics through phosphorylation and inactivation of GSK3β. When DOCK5-Nck2-Akt interactions were disrupted, microtubule formation and degranulation response were severely impaired. Our results thus identify DOCK5 as a key signaling adaptor that orchestrates remodeling of the microtubule network essential for mast cell degranulation.


Dock2 generates characteristic spatiotemporal patterns of Rac activity to regulate neutrophil polarisation, migration and phagocytosis.

  • Polly A Machin‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Rac-GTPases and their Rac-GEF activators play important roles in neutrophil-mediated host defence. These proteins control the adhesion molecules and cytoskeletal dynamics required for neutrophil recruitment to inflamed and infected organs, and the neutrophil effector responses that kill pathogens.


DOCK2 is involved in the host genetics and biology of severe COVID-19.

  • Ho Namkoong‎ et al.
  • Nature‎
  • 2022‎

Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1-5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.


Next-generation sequencing coupled with a cell-free display technology for high-throughput production of reliable interactome data.

  • Shigeo Fujimori‎ et al.
  • Scientific reports‎
  • 2012‎

Next-generation sequencing (NGS) has been applied to various kinds of omics studies, resulting in many biological and medical discoveries. However, high-throughput protein-protein interactome datasets derived from detection by sequencing are scarce, because protein-protein interaction analysis requires many cell manipulations to examine the interactions. The low reliability of the high-throughput data is also a problem. Here, we describe a cell-free display technology combined with NGS that can improve both the coverage and reliability of interactome datasets. The completely cell-free method gives a high-throughput and a large detection space, testing the interactions without using clones. The quantitative information provided by NGS reduces the number of false positives. The method is suitable for the in vitro detection of proteins that interact not only with the bait protein, but also with DNA, RNA and chemical compounds. Thus, it could become a universal approach for exploring the large space of protein sequences and interactome networks.


Thromboxane A2 acts as tonic immunoregulator by preferential disruption of low-avidity CD4+ T cell-dendritic cell interactions.

  • Federica Moalli‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

Interactions between dendritic cells (DCs) and T cells control the decision between activation and tolerance induction. Thromboxane A2 (TXA2) and its receptor TP have been suggested to regulate adaptive immune responses through control of T cell-DC interactions. Here, we show that this control is achieved by selectively reducing expansion of low-avidity CD4(+) T cells. During inflammation, weak tetramer-binding TP-deficient CD4(+) T cells were preferentially expanded compared with TP-proficient CD4(+) T cells. Using intravital imaging of cellular interactions in reactive peripheral lymph nodes (PLNs), we found that TXA2 led to disruption of low- but not high-avidity interactions between DCs and CD4(+) T cells. Lack of TP correlated with higher expression of activation markers on stimulated CD4(+) T cells and with augmented accumulation of follicular helper T cells (TFH), which correlated with increased low-avidity IgG responses. In sum, our data suggest that tonic suppression of weak CD4(+) T cell-DC interactions by TXA2-TP signaling improves the overall quality of adaptive immune responses.


DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis.

  • Yuya Kunisaki‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Neutrophils are highly motile leukocytes, and they play important roles in the innate immune response to invading pathogens. Neutrophil chemotaxis requires Rac activation, yet the Rac activators functioning downstream of chemoattractant receptors remain to be determined. We show that DOCK2, which is a mammalian homologue of Caenorhabditis elegans CED-5 and Drosophila melanogaster Myoblast City, regulates motility and polarity during neutrophil chemotaxis. Although DOCK2-deficient neutrophils moved toward the chemoattractant source, they exhibited abnormal migratory behavior with a marked reduction in translocation speed. In DOCK2-deficient neutrophils, chemoattractant-induced activation of both Rac1 and Rac2 were severely impaired, resulting in the loss of polarized accumulation of F-actin and phosphatidylinositol 3,4,5-triphosphate (PIP3) at the leading edge. On the other hand, we found that DOCK2 associates with PIP3 and translocates to the leading edge of chemotaxing neutrophils in a phosphatidylinositol 3-kinase (PI3K)-dependent manner. These results indicate that during neutrophil chemotaxis DOCK2 regulates leading edge formation through PIP3-dependent membrane translocation and Rac activation.


DOCK8 deficiency causes a skewing to type 2 immunity in the gut with expansion of group 2 innate lymphoid cells.

  • Keisuke Matsubara‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Dedicator of cytokinesis 8 (DOCK8) is a guanine nucleotide exchange factor (GEF) for Cdc42. In humans, homozygous or compound heterozygous deletions in DOCK8 cause a combined immunodeficiency characterized by various allergic diseases including food allergies. Although group 2 innate lymphoid cells (ILC2s) contribute to the development of allergic inflammation by producing interleukin (IL)-5 and IL-13, the role of ILC2s in DOCK8 deficiency has not been fully explored. With the use of cytometry by time-of-flight (CyTOF), we performed high-dimensional phenotyping of intestinal immune cells and found that DOCK8-deficient (Dock8-/-) mice exhibited expansion of ILC2s and other leukocytes associated with type 2 immunity in the small intestine. Moreover, IL-5- and IL-13-producing cells markedly increased in Dock8-/- mice, and the majority of them were lineage-negative cells, most likely ILC2s. Intestinal ILC2s expanded when DOCK8 expression was selectively deleted in hematopoietic cells. Importantly, intestinal ILC2 expansion was also observed in Dock8VAGR mice having mutations in the catalytic center of DOCK8, thereby failing to activate Cdc42. Our findings indicate that DOCK8 is a negative regulator of intestinal ILC2s to inhibit their expansion via Cdc42 activation, and that deletion of DOCK8 causes a skewing to type 2 immunity in the gut.


ASB7 regulates spindle dynamics and genome integrity by targeting DDA3 for proteasomal degradation.

  • Keiji Uematsu‎ et al.
  • The Journal of cell biology‎
  • 2016‎

Proper dynamic regulation of the spindle is essential for successful cell division. However, the molecular mechanisms that regulate spindle dynamics in mitosis are not fully understood. In this study, we show that Cullin 5-interacting suppressor of cytokine signaling box protein ASB7 ubiquitinates DDA3, a regulator of spindle dynamics, thereby targeting it for proteasomal degradation. The presence of microtubules (MTs) prevented the ASB7-DDA3 interaction, thus stabilizing DDA3. Knockdown of ASB7 decreased MT polymerization and increased the proportion of cells with unaligned chromosomes, and this phenotype was rescued by deletion of DDA3. Collectively, these data indicate that ASB7 plays a crucial role in regulating spindle dynamics and genome integrity by controlling the expression of DDA3.


Ubiquitin ligase SPSB4 diminishes cell repulsive responses mediated by EphB2.

  • Fumihiko Okumura‎ et al.
  • Molecular biology of the cell‎
  • 2017‎

Eph receptor tyrosine kinases and their ephrin ligands are overexpressed in various human cancers, including colorectal malignancies, suggesting important roles in many aspects of cancer development and progression as well as in cellular repulsive responses. The ectodomain of EphB2 receptor is cleaved by metalloproteinases (MMPs) MMP-2/MMP-9 and released into the extracellular space after stimulation by its ligand. The remaining membrane-associated fragment is further cleaved by the presenilin-dependent γ-secretase and releases an intracellular peptide that has tyrosine kinase activity. Although the cytoplasmic fragment is degraded by the proteasome, the responsible ubiquitin ligase has not been identified. Here, we show that SOCS box-containing protein SPSB4 polyubiquitinates EphB2 cytoplasmic fragment and that SPSB4 knockdown stabilizes the cytoplasmic fragment. Importantly, SPSB4 down-regulation enhances cell repulsive responses mediated by EphB2 stimulation. Altogether, we propose that SPSB4 is a previously unidentified ubiquitin ligase regulating EphB2-dependent cell repulsive responses.


The transcription factor EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction.

  • Kazuhiko Yamamura‎ et al.
  • Nature communications‎
  • 2017‎

Mutations of DOCK8 in humans cause a combined immunodeficiency characterized by atopic dermatitis with high serum IgE levels. However, the molecular link between DOCK8 deficiency and atopic skin inflammation is unknown. Here we show that CD4+ T cells from DOCK8-deficient mice produce large amounts of IL-31, a major pruritogen associated with atopic dermatitis. IL-31 induction critically depends on the transcription factor EPAS1, and its conditional deletion in CD4+ T cells abrogates skin disease development in DOCK8-deficient mice. Although EPAS1 is known to form a complex with aryl hydrocarbon receptor nuclear translocator (ARNT) and control hypoxic responses, EPAS1-mediated Il31 promoter activation is independent of ARNT, but in collaboration with SP1. On the other hand, we find that DOCK8 is an adaptor and negative regulator of nuclear translocation of EPAS1. Thus, EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction in CD4+ T cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: