2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Translational control of nociception via 4E-binding protein 1.

  • Arkady Khoutorsky‎ et al.
  • eLife‎
  • 2015‎

Activation of the mechanistic/mammalian target of rapamycin (mTOR) kinase in models of acute and chronic pain is strongly implicated in mediating enhanced translation and hyperalgesia. However, the molecular mechanisms by which mTOR regulates nociception remain unclear. Here we show that deletion of the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), a major mTOR downstream effector, which represses eIF4E activity and cap-dependent translation, leads to mechanical, but not thermal pain hypersensitivity. Mice lacking 4E-BP1 exhibit enhanced spinal cord expression of neuroligin 1, a cell-adhesion postsynaptic protein regulating excitatory synapse function, and show increased excitatory synaptic input into spinal neurons, and a lowered threshold for induction of synaptic potentiation. Pharmacological inhibition of eIF4E or genetic reduction of neuroligin 1 levels normalizes the increased excitatory synaptic activity and reverses mechanical hypersensitivity. Thus, translational control by 4E-BP1 downstream of mTOR effects the expression of neuroligin 1 and excitatory synaptic transmission in the spinal cord, and thereby contributes to enhanced mechanical nociception.


Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes.

  • Christos G Gkogkas‎ et al.
  • Cell reports‎
  • 2014‎

Fragile X syndrome (FXS) is the leading genetic cause of autism. Mutations in Fmr1 (fragile X mental retardation 1 gene) engender exaggerated translation resulting in dendritic spine dysmorphogenesis, synaptic plasticity alterations, and behavioral deficits in mice, which are reminiscent of FXS phenotypes. Using postmortem brains from FXS patients and Fmr1 knockout mice (Fmr1(-/y)), we show that phosphorylation of the mRNA 5' cap binding protein, eukaryotic initiation factor 4E (eIF4E), is elevated concomitant with increased expression of matrix metalloproteinase 9 (MMP-9) protein. Genetic or pharmacological reduction of eIF4E phosphorylation rescued core behavioral deficits, synaptic plasticity alterations, and dendritic spine morphology defects via reducing exaggerated translation of Mmp9 mRNA in Fmr1(-/y) mice, whereas MMP-9 overexpression produced several FXS-like phenotypes. These results uncover a mechanism of regulation of synaptic function by translational control of Mmp-9 in FXS, which opens the possibility of new treatment avenues for the diverse neurological and psychiatric aspects of FXS.


Tumour suppressor ING1b maintains genomic stability upon replication stress.

  • Ronald P C Wong‎ et al.
  • Nucleic acids research‎
  • 2011‎

The lesion bypass pathway, which is regulated by monoubiquitination of proliferating cell nuclear antigen (PCNA), is essential for resolving replication stalling due to DNA lesions. This process is important for preventing genomic instability and cancer development. Previously, it was shown that cells deficient in tumour suppressor p33ING1 (ING1b) are hypersensitive to DNA damaging agents via unknown mechanism. In this study, we demonstrated a novel tumour suppressive function of ING1b in preserving genomic stability upon replication stress through regulating PCNA monoubiquitination. We found that ING1b knockdown cells are more sensitive to UV due to defects in recovering from UV-induced replication blockage, leading to enhanced genomic instability. We revealed that ING1b is required for the E3 ligase Rad18-mediated PCNA monoubiquitination in lesion bypass. Interestingly, ING1b-mediated PCNA monoubiquitination is associated with the regulation of histone H4 acetylation. Results indicate that chromatin remodelling contributes to the stabilization of stalled replication fork and to the regulation of PCNA monoubiquitination during lesion bypass.


Loss of eIF4E Phosphorylation Engenders Depression-like Behaviors via Selective mRNA Translation.

  • Inês S Amorim‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

The MAPK/ERK (mitogen-activated protein kinases/extracellular signal-regulated kinase) pathway is a cardinal regulator of synaptic plasticity, learning, and memory in the hippocampus. One of major endpoints of this signaling cascade is the 5' mRNA cap binding protein eIF4E (eukaryotic Initiation Factor 4E), which is phosphorylated on Ser 209 by MNK (MAPK-interacting protein kinases) and controls mRNA translation. The precise role of phospho-eIF4E in the brain is yet to be determined. Herein, we demonstrate that ablation of eIF4E phosphorylation in male mice (4Eki mice) does not impair long-term spatial or contextual fear memory, or the late phase of LTP. Using unbiased translational profiling in mouse brain, we show that phospho-eIF4E differentially regulates the translation of a subset of mRNAs linked to inflammation, the extracellular matrix, pituitary hormones, and the serotonin pathway. Consequently, 4Eki male mice display exaggerated inflammatory responses and reduced levels of serotonin, concomitant with depression and anxiety-like behaviors. Remarkably, eIF4E phosphorylation is required for the chronic antidepressant action of the selective serotonin reuptake inhibitor fluoxetine. Finally, we propose a novel phospho-eIF4E-dependent translational control mechanism in the brain, via the GAIT complex (gamma IFN activated inhibitor of translation). In summary, our work proposes a novel translational control mechanism involved in the regulation of inflammation and depression, which could be exploited to design novel therapeutics.SIGNIFICANCE STATEMENT We demonstrate that downstream of the MAPK (mitogen-activated protein kinase) pathway, eukaryotic Initiation Factor 4E (eIF4E) Ser209 phosphorylation is not required for classical forms of hippocampal LTP and memory. We reveal a novel role for eIF4E phosphorylation in inflammatory responses and depression-like behaviors. eIF4E phosphorylation is required for the chronic action of antidepressants, such as fluoxetine in mice. These phenotypes are accompanied by selective translation of extracellular matrix, pituitary hormones, and serotonin pathway genes, in eIF4E phospho-mutant mice. We also describe a previously unidentified translational control mechanism in the brain, whereby eIF4E phosphorylation is required for inhibiting the translation of gamma IFN activated inhibitor of translation element-containing mRNAs. These findings can be used to design novel therapeutics for depression.


β1 integrin, ILK and mTOR regulate collagen synthesis in mechanically loaded tendon cells.

  • Rouhollah Mousavizadeh‎ et al.
  • Scientific reports‎
  • 2020‎

Tendons are specialized tissues composed primarily of load-responsive fibroblasts (tenocytes) embedded in a collagen-rich extracellular matrix. Habitual mechanical loading or targeted exercise causes tendon cells to increase the stiffness of the extracellular matrix; this adaptation may occur in part through collagen synthesis or remodeling. Integrins are likely to play an important role in transmitting mechanical stimuli from the extracellular matrix to tendon cells, thereby triggering cell signaling pathways which lead to adaptive regulation of mRNA translation and protein synthesis. In this study, we discovered that mechanical stimulation of integrin β1 leads to the phosphorylation of AKT, an event which required the presence of integrin-linked kinase (ILK). Repetitive stretching of tendon cells activates the AKT and mTOR pathways, which in turn regulates mRNA translation and collagen expression. These results support a model in which integrins are an upstream component of the mechanosensory cellular apparatus, regulating fundamental tendon cell functions relevant to exercise-induced adaptation and mechanotherapy.


Uncovering memory-related gene expression in contextual fear conditioning using ribosome profiling.

  • Konstanze Simbriger‎ et al.
  • Progress in neurobiology‎
  • 2021‎

Contextual fear conditioning (CFC) in rodents is the most widely used behavioural paradigm in neuroscience research to elucidate the neurobiological mechanisms underlying learning and memory. It is based on the pairing of an aversive unconditioned stimulus (US; e.g. mild footshock) with a neutral conditioned stimulus (CS; e.g. context of the test chamber) in order to acquire associative long-term memory (LTM), which persists for days and even months. Using genome-wide analysis, several studies have generated lists of genes modulated in response to CFC in an attempt to identify the "memory genes", which orchestrate memory formation. Yet, most studies use naïve animals as a baseline for assessing gene-expression changes, while only few studies have examined the effect of the US alone, without pairing to context, using genome-wide analysis of gene-expression. Herein, using the ribosome profiling methodology, we show that in male mice an immediate shock, which does not lead to LTM formation, elicits pervasive translational and transcriptional changes in the expression of Immediate Early Genes (IEGs) in dorsal hippocampus (such as Fos and Arc), a fact which has been disregarded by the majority of CFC studies. By removing the effect of the immediate shock, we identify and validate a new set of genes, which are translationally and transcriptionally responsive to the association of context-to-footshock in CFC, and thus constitute salient "memory genes".


Translational profiling of macrophages infected with Leishmania donovani identifies mTOR- and eIF4A-sensitive immune-related transcripts.

  • Visnu Chaparro‎ et al.
  • PLoS pathogens‎
  • 2020‎

The protozoan parasite Leishmania donovani (L. donovani) causes visceral leishmaniasis, a chronic infection which is fatal when untreated. Herein, we investigated whether in addition to altering transcription, L. donovani modulates host mRNA translation to establish a successful infection. Polysome-profiling revealed that one third of protein-coding mRNAs expressed in primary mouse macrophages are differentially translated upon infection with L. donovani promastigotes or amastigotes. Gene ontology analysis identified key biological processes enriched for translationally regulated mRNAs and were predicted to be either activated (e.g. chromatin remodeling and RNA metabolism) or inhibited (e.g. intracellular trafficking and antigen presentation) upon infection. Mechanistic in silico and biochemical analyses showed selective activation mTOR- and eIF4A-dependent mRNA translation, including transcripts encoding central regulators of mRNA turnover and inflammation (i.e. PABPC1, EIF2AK2, and TGF-β). L. donovani survival within macrophages was favored under mTOR inhibition but was dampened by pharmacological blockade of eIF4A. Overall, this study uncovers a vast yet selective reprogramming of the host cell translational landscape early during L. donovani infection, and suggests that some of these changes are involved in host defense mechanisms while others are part of parasite-driven survival strategies. Further in vitro and in vivo investigation will shed light on the contribution of mTOR- and eIF4A-dependent translational programs to the outcome of visceral leishmaniasis.


Mitochondrial Threonyl-tRNA Synthetase TARS2 Is Required for Threonine-Sensitive mTORC1 Activation.

  • Sung-Hoon Kim‎ et al.
  • Molecular cell‎
  • 2021‎

Mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and proliferation by sensing fluctuations in environmental cues such as nutrients, growth factors, and energy levels. The Rag GTPases (Rags) serve as a critical module that signals amino acid (AA) availability to modulate mTORC1 localization and activity. Recent studies have demonstrated how AAs regulate mTORC1 activity through Rags. Here, we uncover an unconventional pathway that activates mTORC1 in response to variations in threonine (Thr) levels via mitochondrial threonyl-tRNA synthetase TARS2. TARS2 interacts with inactive Rags, particularly GTP-RagC, leading to increased GTP loading of RagA. mTORC1 activity in cells lacking TARS2 is resistant to Thr repletion, showing that TARS2 is necessary for Thr-dependent mTORC1 activation. The requirement of TARS2, but not cytoplasmic threonyl-tRNA synthetase TARS, for this effect demonstrates an additional layer of complexity in the regulation of mTORC1 activity.


The eIF2α Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4.

  • Salil Saurav Pathak‎ et al.
  • Neuron‎
  • 2019‎

The integrated stress response (ISR) is activated in response to diverse stress stimuli to maintain homeostasis in neurons. Central to this process is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Here, we report a critical role for ISR in regulating the mammalian circadian clock. The eIF2α kinase GCN2 rhythmically phosphorylates eIF2α in the suprachiasmatic circadian clock. Increased eIF2α phosphorylation shortens the circadian period in both fibroblasts and mice, whereas reduced eIF2α phosphorylation lengthens the circadian period and impairs circadian rhythmicity in animals. Mechanistically, phosphorylation of eIF2α promotes mRNA translation of Atf4. ATF4 binding motifs are identified in multiple clock genes, including Per2, Per3, Cry1, Cry2, and Clock. ATF4 binds to the TTGCAGCA motif in the Per2 promoter and activates its transcription. Together, these results demonstrate a significant role for ISR in circadian physiology and provide a potential link between dysregulated ISR and circadian dysfunction in brain diseases.


Identification of Novel Regulators of Radiosensitivity Using High-Throughput Genetic Screening.

  • Rosette N Tamaddondoust‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The biological impact of ionizing radiation (IR) on humans depends not only on the physical properties and absorbed dose of radiation but also on the unique susceptibility of the exposed individual. A critical target of IR is DNA, and the DNA damage response is a safeguard mechanism for maintaining genomic integrity in response to the induced cellular stress. Unrepaired DNA lesions lead to various mutations, contributing to adverse health effects. Cellular sensitivity to IR is highly correlated with the ability of cells to repair DNA lesions, in particular coding sequences of genes that affect that process and of others that contribute to preserving genomic integrity. However, accurate profiling of the molecular events underlying individual sensitivity requires techniques with sensitive readouts. Here we summarize recent studies that have used whole-genome analysis and identified genes that impact individual radiosensitivity. Whereas microarray and RNA-seq provide a snapshot of the transcriptome, RNA interference (RNAi) and CRISPR-Cas9 techniques are powerful tools that enable modulation of gene expression and characterizing the function of specific genes involved in radiosensitivity or radioresistance. Notably, CRISPR-Cas9 has altered the landscape of genome-editing technology with its increased readiness, precision, and sensitivity. Identifying critical regulators of cellular radiosensitivity would help tailor regimens that enhance the efficacy of therapeutic treatments and fast-track prediction of clinical outcomes. It would also contribute to occupational protection based on average individual sensitivity, as well as the formulation of countermeasures to the harmful effects of radiation.


Transcriptional profiling of macrophages reveals distinct parasite stage-driven signatures during early infection by Leishmania donovani.

  • Visnu Chaparro‎ et al.
  • Scientific reports‎
  • 2022‎

Macrophages undergo swift changes in mRNA abundance upon pathogen invasion. Herein we describe early remodelling of the macrophage transcriptome during infection by amastigotes or promastigotes of Leishmania donovani. Approximately 10-16% of host mRNAs were differentially modulated in L. donovani-infected macrophages when compared to uninfected controls. This response was partially stage-specific as a third of changes in mRNA abundance were either exclusively driven by one of the parasite forms or significantly different between them. Gene ontology analyses identified categories associated with immune functions (e.g. antigen presentation and leukocyte activation) among significantly downregulated mRNAs during amastigote infection while cytoprotective-related categories (e.g. DNA repair and apoptosis inhibition) were enriched in upregulated transcripts. Interestingly a combination of upregulated (e.g. cellular response to IFNβ) and repressed (e.g. leukocyte activation, chemotaxis) immune-related transcripts were overrepresented in the promastigote-infected dataset. In addition, Ingenuity Pathway Analysis (IPA) associated specific mRNA subsets with a number of upstream transcriptional regulators predicted to be modulated in macrophages infected with L. donovani amastigotes (e.g. STAT1 inhibition) or promastigotes (e.g. NRF2, IRF3, and IRF7 activation). Overall, our results indicate that early parasite stage-driven transcriptional remodelling in macrophages contributes to orchestrate both protective and deleterious host cell responses during L. donovani infection.


Identification of FDA-approved bifonazole as a SARS-CoV-2 blocking agent following a bioreporter drug screen.

  • Zaid Taha‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2022‎

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Monitoring translation in synaptic fractions using a ribosome profiling strategy.

  • Konstanze Simbriger‎ et al.
  • Journal of neuroscience methods‎
  • 2020‎

The aim of this study was to develop a method to study genome-wide local translation in biochemically isolated synaptic fractions (synaptoneurosomes). This methodology is of particular interest for neurons, due to the cardinal role of local translational control in neuronal sub-compartments, such as dendrites, for plasticity, learning, memory, and for disorders of the nervous system.


Adaptation of transgene mRNA translation boosts the anticancer efficacy of oncolytic HSV1.

  • Huy-Dung Hoang‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2023‎

Transgenes deliver therapeutic payloads to improve oncolytic virus immunotherapy. Transgenes encoded within oncolytic viruses are designed to be highly transcribed, but protein synthesis is often negatively affected by viral infection, compromising the amount of therapeutic protein expressed. Studying the oncolytic herpes simplex virus-1 (HSV1), we found standard transgene mRNAs to be suboptimally translated in infected cells.


p38γ and p38δ modulate innate immune response by regulating MEF2D activation.

  • Alejandra Escós‎ et al.
  • eLife‎
  • 2023‎

Evidence implicating p38γ and p38δ (p38γ/p38δ) in inflammation are mainly based on experiments using Mapk12/Mapk13-deficient (p38γ/δKO) mice, which show low levels of TPL2, the kinase upstream of MKK1-ERK1/2 in myeloid cells. This could obscure p38γ/p38δ roles, since TPL2 is essential for regulating inflammation. Here, we generated a Mapk12D171A/D171A/Mapk13-/- (p38γ/δKIKO) mouse, expressing kinase-inactive p38γ and lacking p38δ. This mouse exhibited normal TPL2 levels, making it an excellent tool to elucidate specific p38γ/p38δ functions. p38γ/δKIKO mice showed a reduced inflammatory response and less susceptibility to lipopolysaccharide (LPS)-induced septic shock and Candida albicans infection than wild-type (WT) mice. Gene expression analyses in LPS-activated wild-type and p38γ/δKIKO macrophages revealed that p38γ/p38δ-regulated numerous genes implicated in innate immune response. Additionally, phospho-proteomic analyses and in vitro kinase assays showed that the transcription factor myocyte enhancer factor-2D (MEF2D) was phosphorylated at Ser444 via p38γ/p38δ. Mutation of MEF2D Ser444 to the non-phosphorylatable residue Ala increased its transcriptional activity and the expression of Nos2 and Il1b mRNA. These results suggest that p38γ/p38δ govern innate immune responses by regulating MEF2D phosphorylation and transcriptional activity.


Virus-tumor interactome screen reveals ER stress response can reprogram resistant cancers for oncolytic virus-triggered caspase-2 cell death.

  • Douglas J Mahoney‎ et al.
  • Cancer cell‎
  • 2011‎

To identify therapeutic opportunities for oncolytic viral therapy, we conducted genome-wide RNAi screens to search for host factors that modulate rhabdoviral oncolysis. Our screens uncovered the endoplasmic reticulum (ER) stress response pathways as important modulators of rhabdovirus-mediated cytotoxicity. Further investigation revealed an unconventional mechanism whereby ER stress response inhibition preconditioned cancer cells, which sensitized them to caspase-2-dependent apoptosis induced by a subsequent rhabdovirus infection. Importantly, this mechanism was tumor cell specific, selectively increasing potency of the oncolytic virus by up to 10,000-fold. In vivo studies using a small molecule inhibitor of IRE1α showed dramatically improved oncolytic efficacy in resistant tumor models. Our study demonstrates proof of concept for using functional genomics to improve biotherapeutic agents for cancer.


Synergistic effects between analogs of DNA and RNA improve the potency of siRNA-mediated gene silencing.

  • Glen F Deleavey‎ et al.
  • Nucleic acids research‎
  • 2010‎

We report that combining a DNA analog (2'F-ANA) with rigid RNA analogs [2'F-RNA and/or locked nucleic acid (LNA)] in siRNA duplexes can produce gene silencing agents with enhanced potency. The favored conformations of these two analogs are different, and combining them in a 1-1 pattern led to reduced affinity, whereas alternating short continuous regions of individual modifications increased affinity relative to an RNA:RNA duplex. Thus, the binding affinity at key regions of the siRNA duplex could be tuned by changing the pattern of incorporation of DNA-like and RNA-like nucleotides. These heavily or fully modified duplexes are active against a range of mRNA targets. Effective patterns of modification were chosen based on screens using two sequences targeting firefly luciferase. We then applied the most effective duplex designs to the knockdown of the eIF4E binding proteins 4E-BP1 and 4E-BP2. We identified modified duplexes with potency comparable to native siRNA. Modified duplexes showed dramatically enhanced stability to serum nucleases, and were characterized by circular dichroism and thermal denaturation studies. Chemical modification significantly reduced the immunostimulatory properties of these siRNAs in human peripheral blood mononuclear cells.


Identification of pannexin 1-regulated genes, interactome, and pathways in rhabdomyosarcoma and its tumor inhibitory interaction with AHNAK.

  • Xiao Xiang‎ et al.
  • Oncogene‎
  • 2021‎

Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, is an aggressive cancer with a poor prognosis. Despite current management, the 5-year survival rate for patients with metastatic RMS is ∼30%; underscoring the need to develop better treatment strategies. We have recently reported that pannexin 1 (PANX1) levels are downregulated in RMS and that restoring its expression inhibits RMS progression. Here, we have surveyed and characterized the molecular changes induced by PANX1 re-expression in RMS. We cataloged transcriptomic changes in this context by RNA sequencing. At the protein level, we unveiled PANX1 interactors using BioID, complemented by co-immunoprecipitation coupled to high-performance liquid chromatography/electrospray ionization tandem mass spectrometry performed in PANX1-enriched fractions. Using these data, we generated searchable public databases for the PANX1 interactome and changes to the RMS transcriptome occurring when PANX1 expression is restored. STRING network analyses revealed a PANX1 interactome involving plasma membrane and cytoskeleton-associated proteins including the previously undescribed interactor AHNAK. Indeed, AHNAK knockdown abrogated the PANX1-mediated reduction in RMS cell viability and migration. Using these unbiased approaches, we bring insight to the mechanisms by which PANX1 inhibits RMS progression, identifying the cell migration protein AHNAK as a key modifier of PANX1-mediated changes in RMS malignant properties.


microRNA-induced translational control of antiviral immunity by the cap-binding protein 4EHP.

  • Xu Zhang‎ et al.
  • Molecular cell‎
  • 2021‎

Type I interferons (IFNs) are critical cytokines in the host defense against invading pathogens. Sustained production of IFNs, however, is detrimental to the host, as it provokes autoimmune diseases. Thus, the expression of IFNs is tightly controlled. We report that the mRNA 5' cap-binding protein 4EHP plays a key role in regulating type I IFN concomitant with controlling virus replication, both in vitro and in vivo. Mechanistically, 4EHP suppresses IFN-β production by effecting the miR-34a-induced translational silencing of Ifnb1 mRNA. miR-34a is upregulated by both RNA virus infection and IFN-β induction, prompting a negative feedback regulatory mechanism that represses IFN-β expression via 4EHP. These findings demonstrate the direct involvement of 4EHP in virus-induced host response, underscoring a critical translational silencing mechanism mediated by 4EHP and miR-34a to impede sustained IFN production. This study highlights an intrinsic regulatory function for miRNA and the translation machinery in maintaining host homeostasis.


mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1.

  • Jian-Jun Jia‎ et al.
  • Nucleic acids research‎
  • 2021‎

LARP1 is a key repressor of TOP mRNA translation. It binds the m7Gppp cap moiety and the adjacent 5'TOP motif of TOP mRNAs, thus impeding the assembly of the eIF4F complex on these transcripts. mTORC1 controls TOP mRNA translation via LARP1, but the details of the mechanism are unclear. Herein we elucidate the mechanism by which mTORC1 controls LARP1's translation repression activity. We demonstrate that mTORC1 phosphorylates LARP1 in vitro and in vivo, activities that are efficiently inhibited by rapamycin and torin1. We uncover 26 rapamycin-sensitive phospho-serine and -threonine residues on LARP1 that are distributed in 7 clusters. Our data show that phosphorylation of a cluster of residues located proximally to the m7Gppp cap-binding DM15 region is particularly sensitive to rapamycin and regulates both the RNA-binding and the translation inhibitory activities of LARP1. Our results unravel a new model of translation control in which the La module (LaMod) and DM15 region of LARP1, both of which can directly interact with TOP mRNA, are differentially regulated: the LaMod remains constitutively bound to PABP (irrespective of the activation status of mTORC1), while the C-terminal DM15 'pendular hook' engages the TOP mRNA 5'-end to repress translation, but only in conditions of mTORC1 inhibition.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: