Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 50 papers

A forward chemical screen in zebrafish identifies a retinoic acid derivative with receptor specificity.

  • Bhaskar C Das‎ et al.
  • PloS one‎
  • 2010‎

Retinoids regulate key developmental pathways throughout life, and have potential uses for differentiation therapy. It should be possible to identify novel retinoids by coupling new chemical reactions with screens using the zebrafish embryonic model.


TETs Regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis.

  • Yahui Lan‎ et al.
  • Cell reports‎
  • 2019‎

Ten-eleven translocation (Tet) enzymes (Tet1/2/3) mediate 5-methylcytosine (5mC) hydroxylation, which can facilitate DNA demethylation and thereby impact gene expression. Studied mostly for how mutant isoforms impact cancer, the normal roles for Tet enzymes during organogenesis are largely unknown. By analyzing compound mutant zebrafish, we discovered a requirement for Tet2/3 activity in the embryonic heart for recruitment of epicardial progenitors, associated with development of the atrial-ventricular canal (AVC). Through a combination of methylation, hydroxymethylation, and transcript profiling, the genes encoding the activin A subunit Inhbaa (in endocardium) and Sox9b (in myocardium) were implicated as demethylation targets of Tet2/3 and critical for organization of AVC-localized extracellular matrix (ECM), facilitating migration of epicardial progenitors onto the developing heart tube. This study elucidates essential DNA demethylation modifications that govern gene expression changes during cardiac development with striking temporal and lineage specificities, highlighting complex interactions in multiple cell populations during development of the vertebrate heart.


Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors.

  • Hongda Li‎ et al.
  • Neuron‎
  • 2019‎

Zika virus (ZIKV) targets neural progenitor cells in the brain, attenuates cell proliferation, and leads to cell death. Here, we describe a role for the ZIKV protease NS2B-NS3 heterodimer in mediating neurotoxicity through cleavage of a host protein required for neurogenesis. Similar to ZIKV infection, NS2B-NS3 expression led to cytokinesis defects and cell death in a protease activity-dependent fashion. Among binding partners, NS2B-NS3 cleaved Septin-2, a cytoskeletal factor involved in cytokinesis. Cleavage of Septin-2 occurred at residue 306 and forced expression of a non-cleavable Septin-2 restored cytokinesis, suggesting a direct mechanism of ZIKV-induced neural toxicity. VIDEO ABSTRACT.


Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis.

  • Emily J Mercer‎ et al.
  • Developmental biology‎
  • 2018‎

Small heat shock proteins are chaperones with variable mechanisms of action. The function of cardiac family member Hspb7 is unknown, despite being identified through GWAS as a potential cardiomyopathy risk gene. We discovered that zebrafish hspb7 mutants display mild focal cardiac fibrosis and sarcomeric abnormalities. Significant mortality was observed in adult hspb7 mutants subjected to exercise stress, demonstrating a genetic and environmental interaction that determines disease outcome. We identified large sarcomeric proteins FilaminC and Titin as Hspb7 binding partners in cardiac cells. Damaged FilaminC undergoes autophagic processing to maintain sarcomeric homeostasis. Loss of Hspb7 in zebrafish or human cardiomyocytes stimulated autophagic pathways and expression of the sister gene encoding Hspb5. Inhibiting autophagy caused FilaminC aggregation in HSPB7 mutant human cardiomyocytes and developmental cardiomyopathy in hspb7 mutant zebrafish embryos. These studies highlight the importance of damage-processing networks in cardiomyocytes, and a previously unrecognized role in this context for Hspb7.


Specificity, redundancy and dosage thresholds among gata4/5/6 genes during zebrafish cardiogenesis.

  • Jessica Sam‎ et al.
  • Biology open‎
  • 2020‎

The Gata4/5/6 sub-family of zinc finger transcription factors regulate many aspects of cardiogenesis. However, critical roles in extra-embryonic endoderm also challenge comprehensive analysis during early mouse cardiogenesis, while zebrafish models have previously relied on knockdown assays. We generated targeted deletions to disrupt each gata4/5/6 gene in zebrafish and analyzed cardiac phenotypes in single, double and triple mutants. The analysis confirmed that loss of gata5 causes cardia bifida and validated functional redundancies for gata5/6 in cardiac precursor specification. Surprisingly, we discovered that gata4 is dispensable for early zebrafish development, while loss of one gata4 allele can suppress the bifid phenotype of the gata5 mutant. The gata4 mutants eventually develop an age-dependent cardiomyopathy. By combining combinations of mutant alleles, we show that cardiac specification depends primarily on an overall dosage of gata4/5/6 alleles rather than a specific gene. We also identify a specific role for gata6 in controlling ventricle morphogenesis through regulation of both the first and second heart field, while loss of both gata4/6 eliminates the ventricle. Thus, different developmental programs are dependent on total dosage, certain pairs, or specific gata4/5/6 genes during embryonic cardiogenesis.This article has an associated First Person interview with the first author of the paper.


Isogenic human trophectoderm cells demonstrate the role of NDUFA4 and associated variants in ZIKV infection.

  • Liuliu Yang‎ et al.
  • iScience‎
  • 2023‎

Population-based genome-wide association studies (GWAS) normally require a large sample size, which can be labor intensive and costly. Recently, we reported a human induced pluripotent stem cell (hiPSC) array-based GWAS method, identifying NDUFA4 as a host factor for Zika virus (ZIKV) infection. In this study, we extended our analysis to trophectoderm cells, which constitute one of the major routes of mother-to-fetus transmission of ZIKV during pregnancy. We differentiated hiPSCs from various donors into trophectoderm cells. We then infected cells carrying loss of function mutations in NDUFA4, harboring risk versus non-risk alleles of SNPs (rs917172 and rs12386620) or having deletions in the NDUFA4 cis-regulatory region with ZIKV. We found that loss/reduction of NDUFA4 suppressed ZIKV infection in trophectoderm cells. This study validated our published hiPSC array-based system as a useful platform for GWAS and confirmed the role of NDUFA4 as a susceptibility locus for ZIKV in disease-relevant trophectoderm cells.


Personalized medicine in the dish to prevent calcium leak associated with short-coupled polymorphic ventricular tachycardia in patient-derived cardiomyocytes.

  • Yvonne Sleiman‎ et al.
  • Stem cell research & therapy‎
  • 2023‎

Polymorphic ventricular tachycardia (PMVT) is a rare genetic disease associated with structurally normal hearts which in 8% of cases can lead to sudden cardiac death, typically exercise-induced. We previously showed a link between the RyR2-H29D mutation and a clinical phenotype of short-coupled PMVT at rest using patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs). In the present study, we evaluated the effects of clinical and experimental anti-arrhythmic drugs on the intracellular Ca2+ handling, contractile and molecular properties in PMVT hiPSC-CMs in order to model a personalized medicine approach in vitro.


Efficient Generation of Cardiac Purkinje Cells from ESCs by Activating cAMP Signaling.

  • Su-Yi Tsai‎ et al.
  • Stem cell reports‎
  • 2015‎

Dysfunction of the specialized cardiac conduction system (CCS) is associated with life-threatening arrhythmias. Strategies to derive CCS cells, including rare Purkinje cells (PCs), would facilitate models for mechanistic studies and drug discovery and also provide new cellular materials for regenerative therapies. A high-throughput chemical screen using CCS:lacz and Contactin2:egfp (Cntn2:egfp) reporter embryonic stem cell (ESC) lines was used to discover a small molecule, sodium nitroprusside (SN), that efficiently promotes the generation of cardiac cells that express gene profiles and generate action potentials of PC-like cells. Imaging and mechanistic studies suggest that SN promotes the generation of PCs from cardiac progenitors initially expressing cardiac myosin heavy chain and that it does so by activating cyclic AMP signaling. These findings provide a strategy to derive scalable PCs, along with insight into the ontogeny of CCS development.


Discovery of a Small-Molecule BMP Sensitizer for Human Embryonic Stem Cell Differentiation.

  • Lingling Feng‎ et al.
  • Cell reports‎
  • 2016‎

Sorely missing from the "toolkit" for directed differentiation of stem/progenitor cells are agonists of the BMP-signaling pathway. Using a high-throughput chemical screen, we discovered that PD407824, a checkpoint kinase 1 (CHK1) inhibitor, increases the sensitivity of cells to sub-threshold amounts of BMP4. We show utility of the compound in the directed differentiation of human embryonic stem cells toward mesoderm or cytotrophoblast stem cells. Blocking CHK1 activity using pharmacological compounds or CHK1 knockout using single guide RNA (sgRNA) confirmed that CHK1 inhibition increases the sensitivity to BMP4 treatment. Additional mechanistic studies indicate that CHK1 inhibition depletes p21 levels, thereby activating CDK8/9, which then phosphorylates the SMAD2/3 linker region, leading to decreased levels of SMAD2/3 protein and enhanced levels of nuclear SMAD1. This study provides insight into mechanisms controlling the BMP/transforming growth factor beta (TGF-β) signaling pathways and a useful pharmacological reagent for directed differentiation of stem cells.


Overlapping Requirements for Tet2 and Tet3 in Normal Development and Hematopoietic Stem Cell Emergence.

  • Cheng Li‎ et al.
  • Cell reports‎
  • 2015‎

The Tet family of methylcytosine dioxygenases (Tet1, Tet2, and Tet3) convert 5-methylcytosine to 5-hydroxymethylcytosine. To date, functional overlap among Tet family members has not been examined systematically in the context of embryonic development. To clarify the potential for overlap among Tet enzymes during development, we mutated the zebrafish orthologs of Tet1, Tet2, and Tet3 and examined single-, double-, and triple-mutant genotypes. Here, we identify Tet2 and Tet3 as the major 5-methylcytosine dioxygenases in the zebrafish embryo and uncover a combined requirement for Tet2 and Tet3 in hematopoietic stem cell (HSC) emergence. We demonstrate that Notch signaling in the hemogenic endothelium is regulated by Tet2/3 prior to HSC emergence and show that restoring expression of the downstream gata2b/scl/runx1 transcriptional network can rescue HSCs in tet2/3 double mutant larvae. Our results reveal essential, overlapping functions for tet genes during embryonic development and uncover a requirement for 5hmC in regulating HSC production.


Sphingosine kinases protect murine embryonic stem cells from sphingosine-induced cell cycle arrest.

  • Suveg Pandey‎ et al.
  • Stem cells (Dayton, Ohio)‎
  • 2020‎

Sphingosine-1-phosphate (S1P) is a bioactive lipid molecule regulating organogenesis, angiogenesis, cell proliferation, and apoptosis. S1P is generated by sphingosine kinases (SPHK1 and SPHK2) through the phosphorylation of ceramide-derived sphingosine. Phenotypes caused by manipulating S1P metabolic enzymes and receptors suggested several possible functions for S1P in embryonic stem cells (ESCs), yet the mechanisms by which S1P and related sphingolipids act in ESCs are controversial. We designed a rigorous test to evaluate the requirement of S1P in murine ESCs by knocking out both Sphk1 and Sphk2 to create cells incapable of generating S1P. To accomplish this, we created lines mutant for Sphk2 and conditionally mutant (floxed) for Sphk1, allowing evaluation of ESCs that transition to double-null state. The Sphk1/2-null ESCs lack S1P and accumulate the precursor sphingosine. The double-mutant cells fail to grow due to a marked cell cycle arrest at G2/M. Mutant cells activate expression of telomere elongation factor genes Zscan4, Tcstv1, and Tcstv3 and display longer telomeric repeats. Adding exogenous S1P to the medium had no impact, but the cell cycle arrest is partially alleviated by the expression of a ceramide synthase 2, which converts excess sphingosine into ceramide. The results indicate that sphingosine kinase activity is essential in mouse ESCs for limiting the accumulation of sphingosine that otherwise drives cell cycle arrest.


The ceramide synthase 2b gene mediates genomic sensing and regulation of sphingosine levels during zebrafish embryogenesis.

  • Karen Mendelson‎ et al.
  • eLife‎
  • 2017‎

Sphingosine-1-phosphate (S1P) is generated through phosphorylation of sphingosine by sphingosine kinases (Sphk1 and Sphk2). We show that sphk2 maternal-zygotic mutant zebrafish embryos (sphk2MZ) display early developmental phenotypes, including a delay in epiboly, depleted S1P levels, elevated levels of sphingosine, and resistance to sphingosine toxicity. The sphk2MZ embryos also have strikingly increased levels of maternal transcripts encoding ceramide synthase 2b (Cers2b), and loss of Cers2b in sphk2MZ embryos phenocopies sphingosine toxicity. An upstream region of the cers2b promoter supports enhanced expression of a reporter gene in sphk2MZ embryos compared to wildtype embryos. Furthermore, ectopic expression of Cers2b protein itself reduces activity of the promoter, and this repression is relieved by exogenous sphingosine. Therefore, the sphk2MZ genome recognizes the lack of sphingosine kinase activity and up-regulates cers2b as a salvage pathway for sphingosine turnover. Cers2b can also function as a sphingolipid-responsive factor to mediate at least part of a feedback regulatory mechanism.


High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain.

  • Ting Zhou‎ et al.
  • Cell stem cell‎
  • 2017‎

Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients.


The small molecule DIPQUO promotes osteogenic differentiation via inhibition of glycogen synthase kinase 3-beta signaling.

  • Brandoch Cook‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Bone fractures are common impact injuries typically resolved through natural processes of osteogenic regeneration and bone remodeling, restoring the biological and mechanical function. However, dysfunctionality in bone healing and repair often arises in the context of aging-related chronic disorders, such as Alzheimer's disease (AD). There is unmet need for effective pharmacological modulators of osteogenic differentiation and an opportunity to probe the complex links between bone biology and cognitive disorders. We previously discovered the small molecule DIPQUO, which promotes osteoblast differentiation and bone mineralization in mouse and human cell culture models, and in zebrafish developmental and regenerative models. Here, we examined the detailed function of this molecule. First, we used kinase profiling, cellular thermal shift assays, and functional studies to identify glycogen synthase kinase 3-beta (GSK3-β) inhibition as a mechanism of DIPQUO action. Treatment of mouse C2C12 myoblasts with DIPQUO promoted alkaline phosphatase expression and activity, which could be enhanced synergistically by treatment with other GSK3-β inhibitors. Suppression of the expression or function of GSK3-β attenuated DIPQUO-dependent osteogenic differentiation. In addition, DIPQUO synergized with GSK3-β inhibitors to stimulate expression of osteoblast genes in human multipotent progenitors. Accordingly, DIPQUO promoted accumulation and activation of β-catenin. Moreover, DIPQUO suppressed activation of tau microtubule-associated protein, an AD-related effector of GSK3-β signaling. Therefore, DIPQUO has potential as both a lead candidate for bone therapeutic development and a pharmacological modulator of GSK3-β signaling in cell culture and animal models of disorders including AD.


Discovery of a drug candidate for GLIS3-associated diabetes.

  • Sadaf Amin‎ et al.
  • Nature communications‎
  • 2018‎

GLIS3 mutations are associated with type 1, type 2, and neonatal diabetes, reflecting a key function for this gene in pancreatic β-cell biology. Previous attempts to recapitulate disease-relevant phenotypes in GLIS3-/- β-like cells have been unsuccessful. Here, we develop a "minimal component" protocol to generate late-stage pancreatic progenitors (PP2) that differentiate to mono-hormonal glucose-responding β-like (PP2-β) cells. Using this differentiation platform, we discover that GLIS3-/- hESCs show impaired differentiation, with significant death of PP2 and PP2-β cells, without impacting the total endocrine pool. Furthermore, we perform a high-content chemical screen and identify a drug candidate that rescues mutant GLIS3-associated β-cell death both in vitro and in vivo. Finally, we discovered that loss of GLIS3 causes β-cell death, by activating the TGFβ pathway. This study establishes an optimized directed differentiation protocol for modeling human β-cell disease and identifies a drug candidate for treating a broad range of GLIS3-associated diabetic patients.


SARS-CoV-2 infection induces beta cell transdifferentiation.

  • Xuming Tang‎ et al.
  • Cell metabolism‎
  • 2021‎

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.


A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS.

  • Xiaohua Duan‎ et al.
  • Cell stem cell‎
  • 2024‎

KRAS mutations, mainly G12D and G12V, are found in more than 90% of pancreatic ductal adenocarcinoma (PDAC) cases. The success of drugs targeting KRASG12C suggests the potential for drugs specifically targeting these alternative PDAC-associated KRAS mutations. Here, we report a high-throughput drug-screening platform using a series of isogenic murine pancreatic organoids that are wild type (WT) or contain common PDAC driver mutations, representing both classical and basal PDAC phenotypes. We screened over 6,000 compounds and identified perhexiline maleate, which can inhibit the growth and induce cell death of pancreatic organoids carrying the KrasG12D mutation both in vitro and in vivo and primary human PDAC organoids. scRNA-seq analysis suggests that the cholesterol synthesis pathway is upregulated specifically in the KRAS mutant organoids, including the key cholesterol synthesis regulator SREBP2. Perhexiline maleate decreases SREBP2 expression levels and reverses the KRAS mutant-induced upregulation of the cholesterol synthesis pathway.


Heart chamber size in zebrafish is regulated redundantly by duplicated tbx2 genes.

  • Anya Sedletcaia‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2011‎

The Tbx2 transcription factor is implicated in growth control based on its association with human cancers. In the heart, Tbx2 represses cardiac differentiation to mediate development of the atrioventricular canal (AVC). The zebrafish genome retains two tbx2 genes, and both are required for formation of the AVC. Here, we show that both genes are also expressed earlier in the primitive heart tube, and we describe a previously unrecognized role for Tbx2 in promoting proliferation of presumptive myocardium at the heart tube stage. In contrast to single knockdowns, depletion of both gene products causes chamber defects, resulting in an expanded atrium and a smaller ventricle, associated with decreased proliferation of ventricular cardiomyocytes. The phenotype correlates with changes in the expression for known cardiac growth factors. Therefore, in zebrafish, two tbx2 genes are functionally redundant for regulating chamber development, while each gene is required independently for development of the AVC.


Novel retinoic acid receptor alpha agonists for treatment of kidney disease.

  • Yifei Zhong‎ et al.
  • PloS one‎
  • 2011‎

Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA) attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs): RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1) in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN). Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN.


Non-core subunit eIF3h of translation initiation factor eIF3 regulates zebrafish embryonic development.

  • Avik Choudhuri‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2010‎

Eukaryotic translation initiation factor eIF3, which plays a central role in translation initiation, consists of five core subunits that are present in both the budding yeast and higher eukaryotes. However, higher eukaryotic eIF3 contains additional (non-core) subunits that are absent in the budding yeast. We investigated the role of one such non-core eIF3 subunit eIF3h, encoded by two distinct genes-eif3ha and eif3hb, as a regulator of embryonic development in zebrafish. Both eif3h genes are expressed during early embryogenesis, and display overlapping yet distinct and highly dynamic spatial expression patterns. Loss of function analysis using specific morpholino oligomers indicates that each isoform has specific as well as redundant functions during early development. The morphant phenotypes correlate with their spatial expression patterns, indicating that eif3h regulates development of the brain, heart, vasculature, and lateral line. These results indicate that the non-core subunits of eIF3 regulate specific developmental programs during vertebrate embryogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: