Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 135 papers

FTO gene variation and measures of body mass in an African population.

  • Branwen J Hennig‎ et al.
  • BMC medical genetics‎
  • 2009‎

Variation in the fat mass and obesity associated (FTO) gene has been reproducibly associated with body mass index (BMI) and obesity in populations of White European origin. Data from Asians and African-Americans is less conclusive.


Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

  • Cecilia M Lindgren‎ et al.
  • PLoS genetics‎
  • 2009‎

To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.


Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity.

  • Christina L Usher‎ et al.
  • Nature genetics‎
  • 2015‎

Hundreds of genes reside in structurally complex, poorly understood regions of the human genome. One such region contains the three amylase genes (AMY2B, AMY2A and AMY1) responsible for digesting starch into sugar. Copy number of AMY1 is reported to be the largest genomic influence on obesity, although genome-wide association studies for obesity have found this locus unremarkable. Using whole-genome sequence analysis, droplet digital PCR and genome mapping, we identified eight common structural haplotypes of the amylase locus that suggest its mutational history. We found that the AMY1 copy number in an individual's genome is generally even (rather than odd) and partially correlates with nearby SNPs, which do not associate with body mass index (BMI). We measured amylase gene copy number in 1,000 obese or lean Estonians and in 2 other cohorts totaling ∼3,500 individuals. We had 99% power to detect the lower bound of the reported effects on BMI, yet found no association.


Independent test assessment using the extreme value distribution theory.

  • Marcio Almeida‎ et al.
  • BMC proceedings‎
  • 2016‎

The new generation of whole genome sequencing platforms offers great possibilities and challenges for dissecting the genetic basis of complex traits. With a very high number of sequence variants, a naïve multiple hypothesis threshold correction hinders the identification of reliable associations by the overreduction of statistical power. In this report, we examine 2 alternative approaches to improve the statistical power of a whole genome association study to detect reliable genetic associations. The approaches were tested using the Genetic Analysis Workshop 19 (GAW19) whole genome sequencing data. The first tested method estimates the real number of effective independent tests actually being performed in whole genome association project by the use of an extreme value distribution and a set of phenotype simulations. Given the familiar nature of the GAW19 data and the finite number of pedigree founders in the sample, the number of correlations between genotypes is greater than in a set of unrelated samples. Using our procedure, we estimate that the effective number represents only 15 % of the total number of independent tests performed. However, even using this corrected significance threshold, no genome-wide significant association could be detected for systolic and diastolic blood pressure traits. The second approach implements a biological relevance-driven hypothesis tested by exploiting prior computational predictions on the effect of nonsynonymous genetic variants detected in a whole genome sequencing association study. This guided testing approach was able to identify 2 promising single-nucleotide polymorphisms (SNPs), 1 for each trait, targeting biologically relevant genes that could help shed light on the genesis of the human hypertension. The first gene, PFH14, associated with systolic blood pressure, interacts directly with genes involved in calcium-channel formation and the second gene, MAP4, encodes a microtubule-associated protein and had already been detected by previous genome-wide association study experiments conducted in an Asian population. Our results highlight the necessity of the development of alternative approached to improve the efficiency on the detection of reasonable candidate associations in whole genome sequencing studies.


Gene-obesogenic environment interactions in the UK Biobank study.

  • Jessica Tyrrell‎ et al.
  • International journal of epidemiology‎
  • 2017‎

Previous studies have suggested that modern obesogenic environments accentuate the genetic risk of obesity. However, these studies have proven controversial as to which, if any, measures of the environment accentuate genetic susceptibility to high body mass index (BMI).


Mendelian randomization studies do not support a causal role for reduced circulating adiponectin levels in insulin resistance and type 2 diabetes.

  • Hanieh Yaghootkar‎ et al.
  • Diabetes‎
  • 2013‎

Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statistics-based genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26-0.35) increase in fasting insulin, a 0.34-SD (0.30-0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47-2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI -0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (-0.20 SD; 95% CI -0.38 to -0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75-1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: -0.03 SD; 95% CI -0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95-1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes.


The genetic architecture of type 2 diabetes.

  • Christian Fuchsberger‎ et al.
  • Nature‎
  • 2016‎

The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.


Genome-wide meta-analysis of common variant differences between men and women.

  • Vesna Boraska‎ et al.
  • Human molecular genetics‎
  • 2012‎

The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10(-8)) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ~115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits.


Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts.

  • Karani S Vimaleswaran‎ et al.
  • PLoS medicine‎
  • 2013‎

Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis.


Type 2 diabetes TCF7L2 risk genotypes alter birth weight: a study of 24,053 individuals.

  • Rachel M Freathy‎ et al.
  • American journal of human genetics‎
  • 2007‎

The role of genes in normal birth-weight variation is poorly understood, and it has been suggested that the genetic component of fetal growth is small. Type 2 diabetes genes may influence birth weight through maternal genotype, by increasing maternal glycemia in pregnancy, or through fetal genotype, by altering fetal insulin secretion. We aimed to assess the role of the recently described type 2 diabetes gene TCF7L2 in birth weight. We genotyped the polymorphism rs7903146 in 15,709 individuals whose birth weight was available from six studies and in 8,344 mothers from three studies. Each fetal copy of the predisposing allele was associated with an 18-g (95% confidence interval [CI] 7-29 g) increase in birth weight (P=.001) and each maternal copy with a 30-g (95% CI 15-45 g) increase in offspring birth weight (P=2.8x10-5). Stratification by fetal genotype suggested that the association was driven by maternal genotype (31-g [95% CI 9-48 g] increase per allele; corrected P=.003). Analysis of diabetes-related traits in 10,314 nondiabetic individuals suggested the most likely mechanism is that the risk allele reduces maternal insulin secretion (disposition index reduced by ~0.15 standard deviation; P=1x10-4), which results in increased maternal glycemia in pregnancy and hence increased offspring birth weight. We combined information with the other common variant known to alter fetal growth, the -30G-->A polymorphism of glucokinase (rs1799884). The 4% of offspring born to mothers carrying three or four risk alleles were 119 g (95% CI 62-172 g) heavier than were the 32% born to mothers with none (for overall trend, P=2x10-7), comparable to the impact of maternal smoking during pregnancy. In conclusion, we have identified the first type 2 diabetes-susceptibility allele to be reproducibly associated with birth weight. Common gene variants can substantially influence normal birth-weight variation.


Association of the calpain-10 gene with type 2 diabetes in Europeans: results of pooled and meta-analyses.

  • Takafumi Tsuchiya‎ et al.
  • Molecular genetics and metabolism‎
  • 2006‎

We conducted pooled and meta-analyses of the association of the calpain-10 gene (CAPN10) polymorphisms SNP-43, Indel-19 and SNP-63 individually and as haplotypes with type 2 diabetes (T2D) in 3237 patients and 2935 controls of European ancestry. In the pooled analyses, the common SNP-43*G allele was associated with modest but statistically significant increased risk of T2D (odds ratio (OR)=1.11 (95% confidence interval (CI), 1.02-1.20), P=0.01). Two haplotype combinations were associated with increased risk of T2D (1-2-1/1-2-1, OR=1.20 (1.03-1.41), P=0.02; and 1-1-2/1-2-1, OR=1.26 (1.01-1.59), P=0.04) and one with decreased risk (1-1-1/2-2-1, OR=0.86 (0.75-0.99), P=0.03). The meta-analysis also showed a significant effect of the 1-2-1/1-2-1 haplogenotype on risk (OR=1.25 (1.05-1.50), P=0.01). However, there was evidence for heterogeneity with respect to this effect (P=0.06). The heterogeneity appeared to be due to data sets in which the cases were selected from samples used in linkage studies of T2D. Using only the population-based case-control samples removed the heterogeneity (P=0.89) and strengthened the evidence for association with T2D in both the pooled (SNP-43*G, OR=1.19 (1.07-1.32), P=0.001; 1-2-1/1-2-1 haplogenotype, OR=1.46 (1.19-1.78), P=0.0003; 1-1-2/1-2-1 haplogenotype, OR=1.52 (1.12-2.06), P=0.007; and 1-1-1/2-2-1 haplogenotype, OR=0.83 (0.70-0.99), P=0.03) and the meta-analysis (SNP-43*G, OR=1.18 (1.05-1.32), P=0.005; 1-2-1/1-2-1 haplogenotype, OR=1.68 (1.33-2.11), P=0.00001). The pooled and meta-analyses as well as the linkage disequilibrium and haplotype diversity studies suggest a role for genetic variation in CAPN10 affecting risk of T2D in Europeans.


A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk.

  • Alisa Manning‎ et al.
  • Diabetes‎
  • 2017‎

To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.


Evidence of a causal relationship between body mass index and psoriasis: A mendelian randomization study.

  • Ashley Budu-Aggrey‎ et al.
  • PLoS medicine‎
  • 2019‎

Psoriasis is a common inflammatory skin disease that has been reported to be associated with obesity. We aimed to investigate a possible causal relationship between body mass index (BMI) and psoriasis.


Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms.

  • Samuel E Jones‎ et al.
  • Nature communications‎
  • 2019‎

Being a morning person is a behavioural indicator of a person's underlying circadian rhythm. Using genome-wide data from 697,828 UK Biobank and 23andMe participants we increase the number of genetic loci associated with being a morning person from 24 to 351. Using data from 85,760 individuals with activity-monitor derived measures of sleep timing we find that the chronotype loci associate with sleep timing: the mean sleep timing of the 5% of individuals carrying the most morningness alleles is 25 min earlier than the 5% carrying the fewest. The loci are enriched for genes involved in circadian regulation, cAMP, glutamate and insulin signalling pathways, and those expressed in the retina, hindbrain, hypothalamus, and pituitary. Using Mendelian Randomisation, we show that being a morning person is causally associated with better mental health but does not affect BMI or risk of Type 2 diabetes. This study offers insights into circadian biology and its links to disease in humans.


Sequence data and association statistics from 12,940 type 2 diabetes cases and controls.

  • Jason Flannick‎ et al.
  • Scientific data‎
  • 2017‎

To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.


Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour.

  • Samuel E Jones‎ et al.
  • Nature communications‎
  • 2019‎

Sleep is an essential human function but its regulation is poorly understood. Using accelerometer data from 85,670 UK Biobank participants, we perform a genome-wide association study of 8 derived sleep traits representing sleep quality, quantity and timing, and validate our findings in 5,819 individuals. We identify 47 genetic associations at P < 5 × 10-8, of which 20 reach a stricter threshold of P < 8 × 10-10. These include 26 novel associations with measures of sleep quality and 10 with nocturnal sleep duration. The majority of identified variants associate with a single sleep trait, except for variants previously associated with restless legs syndrome. For sleep duration we identify a missense variant (p.Tyr727Cys) in PDE11A as the likely causal variant. As a group, sleep quality loci are enriched for serotonin processing genes. Although accelerometer-derived measures of sleep are imperfect and may be affected by restless legs syndrome, these findings provide new biological insights into sleep compared to previous efforts based on self-report sleep measures.


A genome-wide association study implicates multiple mechanisms influencing raised urinary albumin-creatinine ratio.

  • Francesco Casanova‎ et al.
  • Human molecular genetics‎
  • 2019‎

Raised albumin-creatinine ratio (ACR) is an indicator of microvascular damage and renal disease. We aimed to identify genetic variants associated with raised ACR and study the implications of carrying multiple ACR-raising alleles with metabolic and vascular-related disease. We performed a genome-wide association study of ACR using 437 027 individuals from the UK Biobank in the discovery phase, 54 527 more than previous studies, and followed up our findings in independent studies. We identified 62 independent associations with ACR across 56 loci (P < 5 × 10-8), of which 20 were not previously reported. Pathway analyses and the identification of 20 of the 62 variants (at r2 > 0.8) coinciding with signals for at least 16 related metabolic and vascular traits, suggested multiple pathways leading to raised ACR levels. After excluding variants at the CUBN locus, known to alter ACR via effects on renal absorption, an ACR genetic risk score was associated with a higher risk of hypertension, and less strongly, type 2 diabetes and stroke. For some rare genotype combinations at the CUBN locus, most individuals had ACR levels above the microalbuminuria clinical threshold. Contrary to our hypothesis, individuals carrying more CUBN ACR-raising alleles, and above the clinical threshold, had a higher frequency of vascular disease. The CUBN allele effects on ACR were twice as strong in people with diabetes-a result robust to an optimization-algorithm approach to simulating interactions, validating previously reported gene-diabetes interactions (P ≤ 4 × 10-5). In conclusion, a variety of genetic mechanisms and traits contribute to variation in ACR.


Using human genetics to understand the disease impacts of testosterone in men and women.

  • Katherine S Ruth‎ et al.
  • Nature medicine‎
  • 2020‎

Testosterone supplementation is commonly used for its effects on sexual function, bone health and body composition, yet its effects on disease outcomes are unknown. To better understand this, we identified genetic determinants of testosterone levels and related sex hormone traits in 425,097 UK Biobank study participants. Using 2,571 genome-wide significant associations, we demonstrate that the genetic determinants of testosterone levels are substantially different between sexes and that genetically higher testosterone is harmful for metabolic diseases in women but beneficial in men. For example, a genetically determined 1 s.d. higher testosterone increases the risks of type 2 diabetes (odds ratio (OR) = 1.37 (95% confidence interval (95% CI): 1.22-1.53)) and polycystic ovary syndrome (OR = 1.51 (95% CI: 1.33-1.72)) in women, but reduces type 2 diabetes risk in men (OR = 0.86 (95% CI: 0.76-0.98)). We also show adverse effects of higher testosterone on breast and endometrial cancers in women and prostate cancer in men. Our findings provide insights into the disease impacts of testosterone and highlight the importance of sex-specific genetic analyses.


Higher maternal adiposity reduces offspring birthweight if associated with a metabolically favourable profile.

  • William D Thompson‎ et al.
  • Diabetologia‎
  • 2021‎

Higher maternal BMI during pregnancy is associated with higher offspring birthweight, but it is not known whether this is solely the result of adverse metabolic consequences of higher maternal adiposity, such as maternal insulin resistance and fetal exposure to higher glucose levels, or whether there is any effect of raised adiposity through non-metabolic (e.g. mechanical) factors. We aimed to use genetic variants known to predispose to higher adiposity, coupled with a favourable metabolic profile, in a Mendelian randomisation (MR) study comparing the effect of maternal 'metabolically favourable adiposity' on offspring birthweight with the effect of maternal general adiposity (as indexed by BMI).


Identification and analysis of individuals who deviate from their genetically-predicted phenotype.

  • Gareth Hawkes‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Findings from genome-wide association studies have facilitated the generation of genetic predictors for many common human phenotypes. Stratifying individuals misaligned to a genetic predictor based on common variants may be important for follow-up studies that aim to identify alternative causal factors. Using genome-wide imputed genetic data, we aimed to classify 158,951 unrelated individuals from the UK Biobank as either concordant or deviating from two well-measured phenotypes. We first applied our methods to standing height: our primary analysis classified 244 individuals (0.15%) as misaligned to their genetically predicted height. We show that these individuals are enriched for self-reporting being shorter or taller than average at age 10, diagnosed congenital malformations, and rare loss-of-function variants in genes previously catalogued as causal for growth disorders. Secondly, we apply our methods to LDL cholesterol. We classified 156 (0.12%) individuals as misaligned to their genetically predicted LDL cholesterol and show that these individuals were enriched for both clinically actionable cardiovascular risk factors and rare genetic variants in genes previously shown to be involved in metabolic processes. Individuals whose LDL-C was higher than expected based on the genetic predictor were also at higher risk of developing coronary artery disease and type-two diabetes, even after adjustment for measured LDL-C, BMI and age, suggesting upward deviation from genetically predicted LDL-C is indicative of generally poor health. Our results remained broadly consistent when performing sensitivity analysis based on a variety of parametric and non-parametric methods to define individuals deviating from polygenic expectation. Our analyses demonstrate the potential importance of quantitatively identifying individuals for further follow-up based on deviation from genetic predictions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: