2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models.

  • Matthew P Parsons‎ et al.
  • Nature communications‎
  • 2016‎

It has become well accepted that Huntington disease (HD) is associated with impaired glutamate uptake, resulting in a prolonged time-course of extracellular glutamate that contributes to excitotoxicity. However, the data supporting this view come largely from work in synaptosomes, which may overrepresent nerve-terminal uptake over astrocytic uptake. Here, we quantify real-time glutamate dynamics in HD mouse models by high-speed imaging of an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) and electrophysiological recordings of synaptically activated transporter currents in astrocytes. These techniques reveal a disconnect between the results obtained in synaptosomes and those in situ. Exogenous glutamate uptake is impaired in synaptosomes, whereas real-time measures of glutamate clearance in the HD striatum are normal or even accelerated, particularly in the aggressive R6/2 model. Our results highlight the importance of quantifying glutamate dynamics under endogenous release conditions, and suggest that the widely cited uptake impairment in HD does not contribute to pathogenesis.


Comparison between transgenic and AAV-PHP.eB-mediated expression of GCaMP6s using in vivo wide-field functional imaging of brain activity.

  • Nicholas J Michelson‎ et al.
  • Neurophotonics‎
  • 2019‎

We employ transcranial wide-field single-photon imaging to compare genetically encoded calcium sensors under transgenic or viral vector expression strategies. Awake, head-fixed animals and brief visual flash stimuli are used to assess function. The use of awake transcranial imaging may reduce confounds attributed to cranial window implantation or anesthesia states. We report differences in wide-field epifluorescence brightness and peak Δ F / F 0 response to visual stimulation between expression strategies. Other metrics for indicator performance include fluctuation analysis (standard deviation) and regional correlation maps made from spontaneous activity. We suggest that multiple measures, such as stimulus-evoked signal-to-noise ratio, brightness, and averaged visual Δ F / F 0 response, may be necessary to characterize indicator sensitivity and methods of expression. Furthermore, we show that strategies using blood brain barrier-permeable viruses, such as PHP.eB, yield comparable expression and function as those derived from transgenic mice. We suggest that testing of new genetically engineered activity sensors could employ a single-photon, wide-field imaging pipeline involving visual stimulation in awake mice that have been intravenously injected with PHP.eB.


Real-Time Selective Markerless Tracking of Forepaws of Head Fixed Mice Using Deep Neural Networks.

  • Brandon J Forys‎ et al.
  • eNeuro‎
  • 2020‎

Here, we describe a system capable of tracking specific mouse paw movements at high frame rates (70.17 Hz) with a high level of accuracy (mean = 0.95, SD < 0.01). Short-latency markerless tracking of specific body parts opens up the possibility of manipulating motor feedback. We present a software and hardware scheme built on DeepLabCut-a robust movement-tracking deep neural network framework-which enables real-time estimation of paw and digit movements of mice. Using this approach, we demonstrate movement-generated feedback by triggering a USB-GPIO (general-purpose input/output)-controlled LED when the movement of one paw, but not the other, selectively exceeds a preset threshold. The mean time delay between paw movement initiation and LED flash was 44.41 ms (SD = 36.39 ms), a latency sufficient for applying behaviorally triggered feedback. We adapt DeepLabCut for real-time tracking as an open-source package we term DeepCut2RealTime. The ability of the package to rapidly assess animal behavior was demonstrated by reinforcing specific movements within water-restricted, head-fixed mice. This system could inform future work on a behaviorally triggered "closed loop" brain-machine interface that could reinforce behaviors or deliver feedback to brain regions based on prespecified body movements.


MesoNet allows automated scaling and segmentation of mouse mesoscale cortical maps using machine learning.

  • Dongsheng Xiao‎ et al.
  • Nature communications‎
  • 2021‎

Understanding the basis of brain function requires knowledge of cortical operations over wide spatial scales and the quantitative analysis of brain activity in well-defined brain regions. Matching an anatomical atlas to brain functional data requires substantial labor and expertise. Here, we developed an automated machine learning-based registration and segmentation approach for quantitative analysis of mouse mesoscale cortical images. A deep learning model identifies nine cortical landmarks using only a single raw fluorescent image. Another fully convolutional network was adapted to delimit brain boundaries. This anatomical alignment approach was extended by adding three functional alignment approaches that use sensory maps or spatial-temporal activity motifs. We present this methodology as MesoNet, a robust and user-friendly analysis pipeline using pre-trained models to segment brain regions as defined in the Allen Mouse Brain Atlas. This Python-based toolbox can also be combined with existing methods to facilitate high-throughput data analysis.


Mesoscale cortex-wide neural dynamics predict self-initiated actions in mice several seconds prior to movement.

  • Catalin Mitelut‎ et al.
  • eLife‎
  • 2022‎

Volition - the sense of control or agency over one's voluntary actions - is widely recognized as the basis of both human subjective experience and natural behavior in nonhuman animals. Several human studies have found peaks in neural activity preceding voluntary actions, for example the readiness potential (RP), and some have shown upcoming actions could be decoded even before awareness. Others propose that random processes underlie and explain pre-movement neural activity. Here, we seek to address these issues by evaluating whether pre-movement neural activity in mice contains structure beyond that present in random neural activity. Implementing a self-initiated water-rewarded lever-pull paradigm in mice while recording widefield [Ca++] neural activity we find that cortical activity changes in variance seconds prior to movement and that upcoming lever pulls could be predicted between 3 and 5 s (or more in some cases) prior to movement. We found inhibition of motor cortex starting at approximately 5 s prior to lever pulls and activation of motor cortex starting at approximately 2 s prior to a random unrewarded left limb movement. We show that mice, like humans, are biased toward commencing self-initiated actions during specific phases of neural activity but that the pre-movement neural code changes over time in some mice and is widely distributed as behavior prediction improved when using all vs. single cortical areas. These findings support the presence of structured multi-second neural dynamics preceding self-initiated action beyond that expected from random processes. Our results also suggest that neural mechanisms underlying self-initiated action could be preserved between mice and humans.


High-throughput automated home-cage mesoscopic functional imaging of mouse cortex.

  • Timothy H Murphy‎ et al.
  • Nature communications‎
  • 2016‎

Mouse head-fixed behaviour coupled with functional imaging has become a powerful technique in rodent systems neuroscience. However, training mice can be time consuming and is potentially stressful for animals. Here we report a fully automated, open source, self-initiated head-fixation system for mesoscopic functional imaging in mice. The system supports five mice at a time and requires minimal investigator intervention. Using genetically encoded calcium indicator transgenic mice, we longitudinally monitor cortical functional connectivity up to 24 h per day in >7,000 self-initiated and unsupervised imaging sessions up to 90 days. The procedure provides robust assessment of functional cortical maps on the basis of both spontaneous activity and brief sensory stimuli such as light flashes. The approach is scalable to a number of remotely controlled cages that can be assessed within the controlled conditions of dedicated animal facilities. We anticipate that home-cage brain imaging will permit flexible and chronic assessment of mesoscale cortical function.


Peripheral Nerve Ligation Elicits Widespread Alterations in Cortical Sensory Evoked and Spontaneous Activity.

  • Donovan M Ashby‎ et al.
  • Scientific reports‎
  • 2019‎

Peripheral neuropathies result in adaptation in primary sensory and other regions of cortex, and provide a framework for understanding the localized and widespread adaptations that arise from altered sensation. Mesoscale cortical imaging achieves high temporal resolution of activity using optical sensors of neuronal activity to simultaneously image across a wide expanse of cortex and capture this adaptation using sensory-evoked and spontaneous cortical activity. Saphenous nerve ligation in mouse is an animal model of peripheral neuropathy that produces hyperalgesia circumscribed to the hindlimb. We performed saphenous nerve ligation or sham, followed by mesoscale cortical imaging using voltage sensitive dye (VSD) after ten days. We utilized subcutaneous electrical stimulation at multiple stimulus intensities to characterize sensory responses after ligation or sham, and acquired spontaneous activity to characterize functional connectivity and large scale cortical network reorganization. Relative to sham animals, the primary sensory-evoked response to hindlimb stimulation in ligated animals was unaffected in magnitude at all stimulus intensities. However, we observed a diminished propagating wave of cortical activity at lower stimulus intensities in ligated animals after hindlimb, but not forelimb, sensory stimulation. We simultaneously observed a widespread decrease in cortical functional connectivity, where midline association regions appeared most affected. These results are consistent with localized and broad alterations in intracortical connections in response to a peripheral insult, with implications for novel circuit level understanding and intervention for peripheral neuropathies and other conditions affecting sensation.


A three-dimensional virtual mouse generates synthetic training data for behavioral analysis.

  • Luis A Bolaños‎ et al.
  • Nature methods‎
  • 2021‎

We developed a three-dimensional (3D) synthetic animated mouse based on computed tomography scans that is actuated using animation and semirandom, joint-constrained movements to generate synthetic behavioral data with ground-truth label locations. Image-domain translation produced realistic synthetic videos used to train two-dimensional (2D) and 3D pose estimation models with accuracy similar to typical manual training datasets. The outputs from the 3D model-based pose estimation yielded better definition of behavioral clusters than 2D videos and may facilitate automated ethological classification.


PyMouseTracks: Flexible Computer Vision and RFID-Based System for Multiple Mouse Tracking and Behavioral Assessment.

  • Tony Fong‎ et al.
  • eNeuro‎
  • 2023‎

PyMouseTracks (PMT) is a scalable and customizable computer vision and radio frequency identification (RFID)-based system for multiple rodent tracking and behavior assessment that can be set up within minutes in any user-defined arena at minimal cost. PMT is composed of the online Raspberry Pi (RPi)-based video and RFID acquisition with subsequent offline analysis tools. The system is capable of tracking up to six mice in experiments ranging from minutes to days. PMT maintained a minimum of 88% detections tracked with an overall accuracy >85% when compared with manual validation of videos containing one to four mice in a modified home-cage. As expected, chronic recording in home-cage revealed diurnal activity patterns. In open-field, it was observed that novel noncagemate mouse pairs exhibit more similarity in travel trajectory patterns than cagemate pairs over a 10-min period. Therefore, shared features within travel trajectories between animals may be a measure of sociability that has not been previously reported. Moreover, PMT can interface with open-source packages such as DeepLabCut and Traja for pose estimation and travel trajectory analysis, respectively. In combination with Traja, PMT resolved motor deficits exhibited in stroke animals. Overall, we present an affordable, open-sourced, and customizable/scalable mouse behavior recording and analysis system.


Standardized 3D test object for multi-camera calibration during animal pose capture.

  • Hao Hu‎ et al.
  • Neurophotonics‎
  • 2023‎

Accurate capture of animal behavior and posture requires the use of multiple cameras to reconstruct three-dimensional (3D) representations. Typically, a paper ChArUco (or checker) board works well for correcting distortion and calibrating for 3D reconstruction in stereo vision. However, measuring the error in two-dimensional (2D) is also prone to bias related to the placement of the 2D board in 3D. We proposed a procedure as a visual way of validating camera placement, and it also can provide some guidance about the positioning of cameras and potential advantages of using multiple cameras. We propose the use of a 3D printable test object for validating multi-camera surround-view calibration in small animal video capture arenas. The proposed 3D printed object has no bias to a particular dimension and is designed to minimize occlusions. The use of the calibrated test object provided an estimate of 3D reconstruction accuracy. The approach reveals that for complex specimens such as mice, some view angles will be more important for accurate capture of keypoints. Our method ensures accurate 3D camera calibration for surround image capture of laboratory mice and other specimens.


Proteins that promote filopodia stability, but not number, lead to more axonal-dendritic contacts.

  • Pamela Arstikaitis‎ et al.
  • PloS one‎
  • 2011‎

Dendritic filopodia are dynamic protrusions that are thought to play an active role in synaptogenesis and serve as precursors to spine synapses. However, this hypothesis is largely based on a temporal correlation between filopodia formation and synaptogenesis. We investigated the role of filopodia in synapse formation by contrasting the roles of molecules that affect filopodia elaboration and motility, versus those that impact synapse induction and maturation. We used a filopodia inducing motif that is found in GAP-43, as a molecular tool, and found this palmitoylated motif enhanced filopodia number and motility, but reduced the probability of forming a stable axon-dendrite contact. Conversely, expression of neuroligin-1 (NLG-1), a synapse inducing cell adhesion molecule, resulted in a decrease in filopodia motility, but an increase in the number of stable axonal contacts. Moreover, RNAi knockdown of NLG-1 reduced the number of presynaptic contacts formed. Postsynaptic scaffolding proteins such as Shank1b, a protein that induces the maturation of spine synapses, increased the rate at which filopodia transformed into spines by stabilization of the initial contact with axons. Taken together, these results suggest that increased filopodia stability and not density, may be the rate-limiting step for synapse formation.


Multiscale imaging informs translational mouse modeling of neurological disease.

  • Yundi Wang‎ et al.
  • Neuron‎
  • 2022‎

Multiscale neurophysiology reveals that simple motor actions are associated with changes in neuronal firing in virtually every brain region studied. Accordingly, the assessment of focal pathology such as stroke or progressive neurodegenerative diseases must also extend widely across brain areas. To derive mechanistic information through imaging, multiple resolution scales and multimodal factors must be included, such as the structure and function of specific neurons and glial cells and the dynamics of specific neurotransmitters. Emerging multiscale methods in preclinical animal studies that span micro- to macroscale examinations fill this gap, allowing a circuit-based understanding of pathophysiological mechanisms. Combined with high-performance computation and open-source data repositories, these emerging multiscale and large field-of-view techniques include live functional ultrasound, multi- and single-photon wide-scale light microscopy, video-based miniscopes, and tissue-penetrating fiber photometry, as well as variants of post-mortem expansion microscopy. We present these technologies and outline use cases and data pipelines to uncover new knowledge within animal models of stroke, Alzheimer's disease, and movement disorders.


Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

  • Dongsheng Xiao‎ et al.
  • eLife‎
  • 2017‎

Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.


Stress impacts sensory variability through cortical sensory activity motifs.

  • Alexander McGirr‎ et al.
  • Translational psychiatry‎
  • 2020‎

Medically unexplained symptoms in depression are common. These individual-specific complaints are often considered an 'idiom of distress', yet animal studies suggest that cortical sensory representations are flexible and influenced by spontaneous cortical activity. We hypothesized that stress would reveal activity dynamics in somatosensory cortex resulting in greater sensory-evoked response variability. Using millisecond resolution in vivo voltage sensitive dye (VSD) imaging in mouse neocortex, we characterized spontaneous regional depolarizations within limb and barrel regions of somatosensory cortex, or spontaneous sensory motifs, and their influence on sensory variability. Stress revealed an idiosyncratic increase in spontaneous sensory motifs that is normalized by selective serotonin reuptake inhibitor treatment. Spontaneous motif frequency is associated with increased variability in sensory-evoked responses, and we optogenetically demonstrate that regional depolarization in somatosensory cortex increases sensory-evoked variability for seconds. This reveals a putative circuit level target for changes in sensory processing and for unexplained physical complaints in stress-related psychopathology.


Gamma frequency activation of inhibitory neurons in the acute phase after stroke attenuates vascular and behavioral dysfunction.

  • Matilde Balbi‎ et al.
  • Cell reports‎
  • 2021‎

Alterations in gamma oscillations occur in several neurological disorders, and the entrainment of gamma oscillations has been recently proposed as a treatment for neurodegenerative disease. Optogenetic stimulation enhances recovery in models of stroke when applied weeks after injury; however, the benefits of acute brain stimulation have not been investigated. Here, we report beneficial effects of gamma-frequency modulation in the acute phase, within 1 h, after stroke. Transgenic VGAT-ChR2 mice are subject to awake photothrombotic stroke in an area encompassing the forelimb sensory and motor cortex. Optogenetic stimulation at 40 Hz in the peri-infarct zone recovers neuronal activity 24 h after stroke in motor and parietal association areas, as well as blood flow over the first week after stroke. Stimulation significantly reduces lesion volume and improves motor function. Our results suggest that acute-phase modulation of cortical oscillatory dynamics may serve as a target for neuroprotection against stroke.


Decoding of synaptic voltage waveforms by specific classes of recombinant high-threshold Ca(2+) channels.

  • Zhi Liu‎ et al.
  • The Journal of physiology‎
  • 2003‎

Studies suggest that the preferential role of L-type voltage-sensitive Ca(2+) channels (VSCCs) in coupling strong synaptic stimulation to transcription is due to their selective activation of local chemical events. However, it is possible that selective activation of the L-type channel by specific voltage waveforms also makes a contribution. To address this issue we have examined the response of specific Ca(2+) channel types to simulated complex voltage waveforms resembling those encountered during synaptic plasticity (gamma and theta firing frequency). L-, P/Q- and N-type VSCCs (alpha1C, alpha1A, alpha1B/beta1B/alpha2delta, respectively) were all similarly activated by brief action potential (AP) waveforms or sustained step depolarization. When complex waveforms containing large excitatory postsynaptic potentials (EPSPs), APs and spike accommodation were applied under voltage clamp we found that the integrated L-type VSCC current was approximately three times larger than that produced by the P/Q- or N-type Ca(2+) channels (gamma frequency 1 s stimulation). For P/Q- or N-type channels the complex waveforms led to a smaller current than that expected from the response to a simple 1 s step depolarization to 0 or +20 mV. EPSPs present in the waveforms favoured the inactivation of P/Q- and N-type channels. In contrast, activation of the L-type channel was dependent on both EPSP- and AP-mediated depolarization. Expression of P/Q-type channels with reduced voltage-dependent inactivation (alpha1A/beta2A/alpha2delta) or the use of hyperpolarized intervals between AP stimuli greatly increased their response to complex voltage stimuli. We propose that in response to complex synaptic voltage waveforms P/Q- and N-type channels can undergo selective voltage-dependent inactivation leading to a Ca(2+) current mediated predominantly by L-type channels.


An Automated Home-Cage System to Assess Learning and Performance of a Skilled Motor Task in a Mouse Model of Huntington's Disease.

  • Cameron L Woodard‎ et al.
  • eNeuro‎
  • 2017‎

Behavioral testing is a critical step in assessing the validity of rodent models of neurodegenerative disease, as well as evaluating the efficacy of pharmacological interventions. In models of Huntington's disease (HD), a gradual progression of impairments is observed across ages, increasing the need for sensitive, high-throughput and longitudinal assessments. Recently, a number of automated systems have been developed to perform behavioral profiling of animals within their own home-cage, allowing for 24-h monitoring and minimizing experimenter interaction. However, as of yet, few of these have had functionality for the assessment of skilled motor learning, a relevant behavior for movement disorders such as HD. To address this, we assess a lever positioning task within the mouse home-cage. Animals first acquire a simple operant response, before moving to a second phase where they must learn to hold the lever for progressively longer in a rewarded position range. Testing with this paradigm has revealed the presence of distinct phenotypes in the YAC128 mouse model of HD at three early symptomatic time points. YAC128 mice at two months old, but not older, had a motor learning deficit when required to adapt their response to changes in task requirements. In contrast, six-month-old YAC128 mice had disruptions of normal circadian activity and displayed kinematic abnormalities during performance of the task, suggesting an impairment in motor control. This system holds promise for facilitating high throughput behavioral assessment of HD mouse models for preclinical therapeutic screening.


Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo.

  • Shengxiang Zhang‎ et al.
  • PLoS biology‎
  • 2007‎

In vivo two-photon microscopy was used to image in real time dendrites and their spines in a mouse photothrombotic stroke model that reduced somatosensory cortex blood flow in discrete regions of cortical functional maps. This approach allowed us to define relationships between blood flow, cortical structure, and function on scales not previously achieved with macroscopic imaging techniques. Acute ischemic damage to dendrites was triggered within 30 min when blood flow over >0.2 mm(2) of cortical surface was blocked. Rapid damage was not attributed to a subset of clotted or even leaking vessels (extravasation) alone. Assessment of stroke borders revealed a remarkably sharp transition between intact and damaged synaptic circuitry that occurred over tens of mum and was defined by a transition between flowing and blocked vessels. Although dendritic spines were normally ~13 microm from small flowing vessels, we show that intact dendritic structure can be maintained (in areas without flowing vessels) by blood flow from vessels that are on average 80 microm away. Functional imaging of intrinsic optical signals associated with activity-evoked hemodynamic responses in somatosensory cortex indicated that sensory-induced changes in signal were blocked in areas with damaged dendrites, but were present ~400 microm away from the border of dendritic damage. These results define the range of influence that blood flow can have on local cortical fine structure and function, as well as to demonstrate that peri-infarct tissues can be functional within the first few hours after stroke and well positioned to aid in poststroke recovery.


Automated task training and longitudinal monitoring of mouse mesoscale cortical circuits using home cages.

  • Timothy H Murphy‎ et al.
  • eLife‎
  • 2020‎

We report improved automated open-source methodology for head-fixed mesoscale cortical imaging and/or behavioral training of home cage mice using Raspberry Pi-based hardware. Staged partial and probabilistic restraint allows mice to adjust to self-initiated headfixation over 3 weeks' time with ~50% participation rate. We support a cue-based behavioral licking task monitored by a capacitive touch-sensor water spout. While automatically head-fixed, we acquire spontaneous, movement-triggered, or licking task-evoked GCaMP6 cortical signals. An analysis pipeline marked both behavioral events, as well as analyzed brain fluorescence signals as they relate to spontaneous and/or task-evoked behavioral activity. Mice were trained to suppress licking and wait for cues that marked the delivery of water. Correct rewarded go-trials were associated with widespread activation of midline and lateral barrel cortex areas following a vibration cue and delayed frontal and lateral motor cortex activation. Cortical GCaMP signals predicted trial success and correlated strongly with trial-outcome dependent body movements.


PiDose: an open-source system for accurate and automated oral drug administration to group-housed mice.

  • Cameron L Woodard‎ et al.
  • Scientific reports‎
  • 2020‎

Drug treatment studies in laboratory mice typically employ manual administration methods such as injection or gavage, which can be time-consuming to perform over long periods and cause substantial stress in animals. These stress responses may mask or enhance treatment effects, increasing the risk of false positive or negative results and decreasing reliability. To address the lack of an automated method for drug treatment in group-housed mice, we have developed PiDose, a home-cage attached device that weighs individual animals and administers a daily dosage of drug solution based on each animal's bodyweight through their drinking water. Group housed mice are identified through the use of RFID tagging and receive both regular water and drug solution drops by licking at a spout within the PiDose module. This system allows animals to be treated over long periods (weeks to months) in a fully automated fashion, with high accuracy and minimal experimenter interaction. PiDose is low-cost and fully open-source and should prove useful for researchers in both translational and basic research.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: