Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 363 papers

Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq.

  • Bin Hu‎ et al.
  • Nucleic acids research‎
  • 2015‎

Sequencing DNA fragments associated with proteins following in vivo cross-linking with formaldehyde (known as ChIP-seq) has been used extensively to describe the distribution of proteins across genomes. It is not widely appreciated that this method merely estimates a protein's distribution and cannot reveal changes in occupancy between samples. To do this, we tagged with the same epitope orthologous proteins in Saccharomyces cerevisiae and Candida glabrata, whose sequences have diverged to a degree that most DNA fragments longer than 50 bp are unique to just one species. By mixing defined numbers of C. glabrata cells (the calibration genome) with S. cerevisiae samples (the experimental genomes) prior to chromatin fragmentation and immunoprecipitation, it is possible to derive a quantitative measure of occupancy (the occupancy ratio - OR) that enables a comparison of occupancies not only within but also between genomes. We demonstrate for the first time that this 'internal standard' calibration method satisfies the sine qua non for quantifying ChIP-seq profiles, namely linearity over a wide range. Crucially, by employing functional tagged proteins, our calibration process describes a method that distinguishes genuine association within ChIP-seq profiles from background noise. Our method is applicable to any protein, not merely highly conserved ones, and obviates the need for the time consuming, expensive, and technically demanding quantification of ChIP using qPCR, which can only be performed on individual loci. As we demonstrate for the first time in this paper, calibrated ChIP-seq represents a major step towards documenting the quantitative distributions of proteins along chromosomes in different cell states, which we term biological chromodynamics.


Microbubble-mediated ultrasound enhances the lethal effect of gentamicin on planktonic Escherichia coli.

  • Han-Xiao Zhu‎ et al.
  • BioMed research international‎
  • 2014‎

Previous research has found that low-intensity ultrasound enhanced the lethal effect of gentamicin on planktonic E. coli. We aimed to further investigate whether microbubble-mediated low-intensity ultrasound could further enhance the antimicrobial efficacy of gentamicin. The planktonic E. coli (ATCC 25922) was distributed to four different interventions: control (GCON), microbubble only (GMB), ultrasound only (GUS), and microbubble-mediated ultrasound (GMUS). Ultrasound was applied with 100 mW/cm(2) (average intensity) and 46.5 KHz, which presented no bactericidal activity. After 12 h, plate counting was used to estimate the number of bacteria, and bacterial micromorphology was observed with transmission electron microscope. The results showed that the viable counts of E. coli in GMUS were decreased by 1.01 to 1.42 log10 CFU/mL compared with GUS (P < 0.01). The minimal inhibitory concentration (MIC) of gentamicin against E. coli was 1 μ g/mL in the GMUS and GUS groups, lower than that in the GCON and GMB groups (2 μ g/mL). Transmission electron microscopy (TEM) images exhibited more destruction and higher thickness of bacterial cell membranes in the GMUS than those in other groups. The reason might be the increased permeability of cell membranes for gentamicin caused by acoustic cavitation.


HIC1 attenuates invasion and metastasis by inhibiting the IL-6/STAT3 signalling pathway in human pancreatic cancer.

  • Bin Hu‎ et al.
  • Cancer letters‎
  • 2016‎

Hypermethylated in cancer 1 (HIC1) is a tumour suppressor gene that is frequently deleted or epigenetically silenced in many human cancers. However, the molecular function of HIC1 in pancreatic cancer has not been fully elucidated, especially in cancer invasion and metastasis. We aimed to clarify the clinical relevance of HIC1 and human pancreatic cancer and the mechanism of its effect on invasion and metastasis .HIC1 was downregulated in pancreatic cancer patient cancer tissue and pancreatic cancer cell lines. A tissue microarray analysis demonstrated that negative HIC1 expression predicted advanced pathological stages and worse patient survival. In addition, HIC1 inhibited the invasion and metastasis of pancreatic cancer cells both in vitro and in vivo. Finally, HIC1 repressed the expression of STAT3 target genes, including c-Myc, VEGF, CyclinD1, MMP2 and MMP9, by binding and interacting with STAT3 to impede its DNA-binding ability but without affecting the protein levels of STAT3 and p-STAT3. Therefore, HIC1 appears to function as a STAT3 inhibitor and may be a promising target for cancer research and for the development of an optimal treatment approach for pancreatic cancer.


Single Channel Recordings Reveal Differential β2 Subunit Modulations Between Mammalian and Drosophila BKCa(β2) Channels.

  • Zhenzhen Yan‎ et al.
  • PloS one‎
  • 2016‎

Large-conductance Ca2+- and voltage-activated potassium (BK) channels are widely expressed in tissues. As a voltage and calcium sensor, BK channels play significant roles in regulating the action potential frequency, neurotransmitter release, and smooth muscle contraction. After associating with the auxiliary β2 subunit, mammalian BK(β2) channels (mouse or human Slo1/β2) exhibit enhanced activation and complete inactivation. However, how the β2 subunit modulates the Drosophila Slo1 channel remains elusive. In this study, by comparing the different functional effects on heterogeneous BK(β2) channel, we found that Drosophila Slo1/β2 channel exhibits "paralyzed"-like and incomplete inactivation as well as slow activation. Further, we determined three different modulations between mammalian and Drosophila BK(β2) channels: 1) dSlo1/β2 doesn't have complete inactivation. 2) β2(K33,R34,K35) delays the dSlo1/Δ3-β2 channel activation. 3) dSlo1/β2 channel has enhanced pre-inactivation than mSlo1/β2 channel. The results in our study provide insights into the different modulations of β2 subunit between mammalian and Drosophila Slo1/β2 channels and structural basis underlie the activation and pre-inactivation of other BK(β) complexes.


Role of Phosphorylated HDAC4 in Stroke-Induced Angiogenesis.

  • Juan Liu‎ et al.
  • BioMed research international‎
  • 2017‎

Acetylation or deacetylation of chromatin proteins and transcription factors is part of a complex signaling system that is involved in the control of neurological disorders. Recent studies have demonstrated that histone deacetylases (HDACs) exert protective effects in attenuating neuronal injury after ischemic insults. Class IIa HDAC4 is highly expressed in the brain, and neuronal activity depends on the nucleocytoplasmic shuttling of HDAC4. However, little is known about HDAC4 and its roles in ischemic stroke. In this study, we report that phosphorylation of HDAC4 was remarkably upregulated after stroke and blockade of HDAC4 phosphorylation with GÖ6976 repressed stroke-induced angiogenesis. Phosphorylation of HDAC4 was also increased in endothelial cells hypoxia model and suppression of HDAC4 phosphorylation inhibited the tube formation and migration of endothelial cells in vitro. Furthermore, in addition to the inhibition of angiogenesis, blockade of HDAC4 phosphorylation suppressed the expression of genes downstream of HIF-VEGF signaling in vitro and in vivo. These data indicate that phosphorylated HDAC4 may serve as an important regulator in stroke-induced angiogenesis. The protective mechanism of phosphorylated HDAC4 is associated with HIF-VEGF signaling, implicating a novel therapeutic target in stroke.


A longitudinal study of atrophy in amnestic mild cognitive impairment and normal aging revealed by cortical thickness.

  • Zhijun Yao‎ et al.
  • PloS one‎
  • 2012‎

In recent years, amnestic mild cognitive impairment (aMCI) has attracted significant attention as an indicator of high risk for Alzheimer's disease. An understanding of the pathology of aMCI may benefit the development of effective clinical treatments for dementia. In this work, we measured the cortical thickness of 109 aMCI subjects and 99 normal controls (NC) twice over two years. The longitudinal changes and the cross-sectional differences between the two types of participants were explored using the vertex thickness values. The thickness of the cortex in aMCI was found significantly reduced in both longitudinal and between-group comparisons, mainly in the temporal lobe, superolateral parietal lobe and some regions of the frontal cortices. Compared to NC, the aMCI showed a significantly high atrophy rate in the left lateral temporal lobe and left parahippocampal gyrus over two years. Additionally, a significant positive correlation between brain atrophy and the decline of Mini-Mental State Examination (MMSE) scores was also found in the left superior and left middle temporal gyrus in aMCI. These findings demonstrated specific longitudinal spatial patterns of cortical atrophy in aMCI and NC. The higher atrophy rate in aMCI might be responsible for the accelerated functional decline in the aMCI progression process.


Mechanistic insights into CED-4-mediated activation of CED-3.

  • Weijiao Huang‎ et al.
  • Genes & development‎
  • 2013‎

Programmed cell death in Caenorhabditis elegans requires activation of the caspase CED-3, which strictly depends on CED-4. CED-4 forms an octameric apoptosome, which binds the CED-3 zymogen and facilitates its autocatalytic maturation. Despite recent advances, major questions remain unanswered. Importantly, how CED-4 recognizes CED-3 and how such binding facilitates CED-3 activation remain completely unknown. Here we demonstrate that the L2' loop of CED-3 directly binds CED-4 and plays a major role in the formation of an active CED-4-CED-3 holoenzyme. The crystal structure of the CED-4 apoptosome bound to the L2' loop fragment of CED-3, determined at 3.2 Å resolution, reveals specific interactions between a stretch of five hydrophobic amino acids from CED-3 and a shallow surface pocket within the hutch of the funnel-shaped CED-4 apoptosome. Structure-guided biochemical analysis confirms the functional importance of the observed CED-4-CED-3 interface. Structural analysis together with published evidence strongly suggest a working model in which two molecules of CED-3 zymogen, through specific recognition, are forced into the hutch of the CED-4 apoptosome, consequently undergoing dimerization and autocatalytic maturation. The mechanism of CED-3 activation represents a major revision of the prevailing model for initiator caspase activation.


Blockade of Kv1.3 channels ameliorates radiation-induced brain injury.

  • Ying Peng‎ et al.
  • Neuro-oncology‎
  • 2014‎

Tumors affecting the head, neck, and brain account for significant morbidity and mortality. The curative efficacy of radiotherapy for these tumors is well established, but radiation carries a significant risk of neurologic injury. So far, neuroprotective therapies for radiation-induced brain injury are still limited. In this study we demonstrate that Stichodactyla helianthus (ShK)-170, a specific inhibitor of the voltage-gated potassium (Kv)1.3 channel, protected mice from radiation-induced brain injury.


Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis.

  • Li Huang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2016‎

Previous studies have investigated the sustained aberrantly activated Interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is crucial for pancreatic cancer growth and metastasis. Suppressor of cytokine signaling 3 (SOCS3), as a key negative feedback regulator of this signaling pathway, is usually down-regulated in various cancers. In the present study, we aim at exploring the biological function and the underlying molecular regulation mechanisms of SOCS3 in pancreatic cancer.


Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice.

  • Guo-wen Hu‎ et al.
  • Stem cell research & therapy‎
  • 2015‎

'Patient-specific' induced pluripotent stem cells (iPSCs) are attractive because they can generate abundant cells without the risk of immune rejection for cell therapy. Studies have shown that iPSC-derived mesenchymal stem cells (iMSCs) possess powerful proliferation, differentiation, and therapeutic effects. Recently, most studies indicate that stem cells exert their therapeutic effect mainly through a paracrine mechanism other than transdifferentiation, and exosomes have emerged as an important paracrine factor for stem cells to reprogram injured cells. The objective of this study was to evaluate whether exosomes derived from iMSCs (iMSCs-Exo) possess the ability to attenuate limb ischemia and promote angiogenesis after transplantation into limbs of mice with femoral artery excision.


Involvement of LSECtin in the hepatic natural killer cell response.

  • Juntao Yang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Accumulating evidence has indicated that natural killer cells (NK cells) play an important role in immune responses generated in the liver. However, the underlying molecular basis for local immune regulation is poorly understood. Mice were intraperitoneally injected with polyinosinic-polycytidylic acid (PolyI:C) at a dose of 20 mg/kg body wt. The percentage and absolute number of NK cells in the liver were analysed with flow cytometry. LSECtin knockout mice and LSECtin cDNA plasmids were used for analyze the role of LSECtin in hepatic NK cell regulation in vivo. Here, we show that the C-type lectin LSECtin, a member of the DC-SIGN family, is a novel liver regulator for NK cells. LSECtin could bind to NK cells in a carbohydrate-dependent manner and could regulate the number of hepatic NK cells. In the NK cell-mediated acute liver injury model induced with PolyI:C, the exogenous expression of LSECtin accelerated NK cell-induced liver injury, whereas the absence of LSECtin ameliorated this condition. Our results reveal that LSECtin is a novel, liver-specific NK cell regulator that may be a target for the treatment of inflammatory diseases in the liver.


Disruption of Notch signaling aggravates irradiation-induced bone marrow injury, which is ameliorated by a soluble Dll1 ligand through Csf2rb2 upregulation.

  • Juan-Juan Chen‎ et al.
  • Scientific reports‎
  • 2016‎

Physical and chemical insult-induced bone marrow (BM) damage often leads to lethality resulting from the depletion of hematopoietic stem and progenitor cells (HSPCs) and/or a deteriorated BM stroma. Notch signaling plays an important role in hematopoiesis, but whether it is involved in BM damage remains unclear. In this study, we found that conditional disruption of RBP-J, the transcription factor of canonical Notch signaling, increased irradiation sensitivity in mice. Activation of Notch signaling with the endothelial cell (EC)-targeted soluble Dll1 Notch ligand mD1R promoted BM recovery after irradiation. mD1R treatment resulted in a significant increase in myeloid progenitors and monocytes in the BM, spleen and peripheral blood after irradiation. mD1R also enhanced hematopoiesis in mice treated with cyclophosphamide, a chemotherapeutic drug that induces BM suppression. Mechanistically, mD1R increased the proliferation and reduced the apoptosis of myeloid cells in the BM after irradiation. The β chain cytokine receptor Csf2rb2 was identified as a downstream molecule of Notch signaling in hematopoietic cells. mD1R improved hematopoietic recovery through up-regulation of the hematopoietic expression of Csf2rb2. Our findings reveal the role of Notch signaling in irradiation- and drug-induced BM suppression and establish a new potential therapy of BM- and myelo-suppression induced by radiotherapy and chemotherapy.


Tissue Kallikrein Alleviates Cerebral Ischemia-Reperfusion Injury by Activating the B2R-ERK1/2-CREB-Bcl-2 Signaling Pathway in Diabetic Rats.

  • Ruifeng Shi‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2016‎

Diabetes mellitus (DM) substantially increases the risk of ischemic stroke and reduces the tolerance to ischemic insults. Tissue kallikrein (TK) has been demonstrated to protect neurons from ischemia/reperfusion (I/R) injury in orthoglycemic model by activating the bradykinin B2 receptor (B2R). Considering the differential effects of B2R or bradykinin B1 receptor (B1R) on cardioprotection and neuroprotection in I/R with or without diabetes, this study was designed to investigate the role of TK during cerebral I/R injury in streptozotocin-induced diabetic rats. Intravenous injection of TK inhibited apoptosis in neurons, alleviated edema and inflammatory reactions after focal cerebral I/R, significantly reduced the infarct volume, and improved functional recovery. These beneficial effects were accompanied by activation of the extracellular signal-regulated kinase 1/2 (ERK1/2), cAMP response element-binding (CREB), and Bcl-2 signal proteins. Inhibition of the B2R or ERK1/2 pathway abated the effects of TK, whereas an antagonist of B1R enhanced the effects. These findings reveal that the neuroprotective effect of TK against cerebral I/R injury in streptozotocin-induced diabetic rats mainly involves the enhancement of B2R and ERK1/2-CREB-Bcl-2 signaling pathway activity.


Hydrogen Sulfide Up-Regulates the Expression of ATP-Binding Cassette Transporter A1 via Promoting Nuclear Translocation of PPARα.

  • Dong Li‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

ATP binding cassette transporter A1 (ABCA1) plays a key role in atherogenesis. Hydrogen sulfide (H₂S), a gasotransmitter, has been reported to play an anti-atherosclerotic role. However, the underlying mechanisms are largely unknown. In this study we examined whether and how H₂S regulates ABCA1 expression. The effect of H₂S on ABCA1 expression and lipid metabolism were assessed in vitro by cultured human hepatoma cell line HepG2, and in vivo by ApoE(-/-) mice with a high-cholesterol diet. NaHS (an exogenous H₂S donor) treatment significantly increased the expression of ABCA1, ApoA1, and ApoA2 and ameliorated intracellular lipid accumulation in HepG2 cells. Depletion of the endogenous H₂S generator cystathionine γ-lyase (CSE) by small RNA interference (siRNA) significantly decreased the expression of ABCA1 and resulted in the accumulation of lipids in HepG2 cells. In vivo NaHS treatment significantly reduced the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL), diminished atherosclerotic plaque size, and increased hepatic ABCA1 expression in fat-fed ApoE(-/-) mice. Further study revealed that NaHS upregulated ABCA1 expression by promoting peroxisome proliferator-activated receptor α (PPARα) nuclear translocation. H₂S up-regulates the expression of ABCA1 by promoting the nuclear translocation of PPARα, providing a fundamental mechanism for the anti-atherogenic activity of H₂S. H₂S may be a promising potential drug candidate for the treatment of atherosclerosis.


Somato-dendritic decoupling as a novel mechanism for protracted cortical maturation.

  • Taylor Chomiak‎ et al.
  • BMC biology‎
  • 2016‎

Both human and animal data indicate that disruption of the endogenously slow maturation of temporal association cortical (TeA) networks is associated with abnormal higher order cognitive development. However, the neuronal mechanisms underlying the endogenous maturation delay of the TeA are poorly understood.


tRNA-Derived Small Non-Coding RNAs in Response to Ischemia Inhibit Angiogenesis.

  • Qing Li‎ et al.
  • Scientific reports‎
  • 2016‎

Ischemic injuries will lead to necrotic tissue damage, and post-ischemia angiogenesis plays critical roles in blood flow restoration and tissue recovery. Recently, several types of small RNAs have been reported to be involved in this process. In this study, we first generated a rat brain ischemic model to investigate the involvement of new types of small RNAs in ischemia. We utilized deep sequencing and bioinformatics analyses to demonstrate that the level of small RNA fragments derived from tRNAs strikingly increased in the ischemic rat brain. Among these sequences, tRNA(Val)- and tRNA(Gly)-derived small RNAs account for the most abundant segments. The up-regulation of tRNA(Val)- and tRNA(Gly)-derived fragments was verified through northern blot and quantitative PCR analyses. The levels of these two fragments also increased in a mouse hindlimb ischemia model and cellular hypoxia model. Importantly, up-regulation of the tRNA(Val)- and tRNA(Gly)-derived fragments in endothelial cells inhibited cell proliferation, migration and tube formation. Furthermore, we showed that these small RNAs are generated by angiogenin cleavage. Our results indicate that tRNA-derived fragments are involved in tissue ischemia, and we demonstrate for the first time that tRNA(Val)- and tRNA(Gly)-derived fragments inhibit angiogenesis by modulating the function of endothelial cells.


Genetically engineered excitable cardiac myofibroblasts coupled to cardiomyocytes rescue normal propagation and reduce arrhythmia complexity in heterocellular monolayers.

  • Luqia Hou‎ et al.
  • PloS one‎
  • 2013‎

The use of genetic engineering of unexcitable cells to enable expression of gap junctions and inward rectifier potassium channels has suggested that cell therapies aimed at establishing electrical coupling of unexcitable donor cells to host cardiomyocytes may be arrhythmogenic. Whether similar considerations apply when the donor cells are electrically excitable has not been investigated. Here we tested the hypothesis that adenoviral transfer of genes coding Kir2.1 (I(K1)), Na(V)1.5 (I(Na)) and connexin-43 (Cx43) proteins into neonatal rat ventricular myofibroblasts (NRVF) will convert them into fully excitable cells, rescue rapid conduction velocity (CV) and reduce the incidence of complex reentry arrhythmias in an in vitro model.


Effects of curcumin in treatment of experimental pulmonary fibrosis: a comparison with hydrocortisone.

  • Min Xu‎ et al.
  • Journal of ethnopharmacology‎
  • 2007‎

To compare curcumin with hydrocortisone for treating bleomycin-induced pulmonary fibrosis (BLMPF), four groups of rats were injected with 1.5 mg/kg bleomycin intratracheally. Then the Group HC rats were treated with three injections of 2mg/kg hydrocortisone i.p.; Group CH and CL rats, respectively, were orally given 500 or 250 mg/kg curcumin daily; and Group PC rats were given deionized water alone. After 28 days of treatment, lung samples were examined by H-E staining, Masson's staining and immunohistochemical analyses and pulmonary type I collagen (Col-I), inducible nitric oxide synthetase (iNOS) and transforming growth factor-beta1 (TGF-beta1) were determined by Western blotting and real-time RT PCR analyses. The results showed that (1) Group PC rats had histopathological characteristics of BLMPF with significant increase in their protein/mRNA expressions of Col-I (+114%/+173%), iNOS (+146%/+523%) and TGF-beta1 (+476%/+527%) (P<0.01); (2) in Group HC, CH and CL rats, protein/mRNA expressions of Col-I (-39%/-52%, -31%/-57%, -33%/-58%), iNOS (-31%/-51%, -31%/-79%, -31%/-47%) and TGF-beta1 (-64%/-78%, -75%/-74%, -81%/-79%) were significantly lower than Group PC (P<0.05); (3) except for levels of TGF-beta1 protein, there was no significant difference among Group CH, CL and HC rats (P>0.05). It suggests that curcumin may play a similar role as hydrocortisone in preventing BLMPF.


T cell targeting and phagocytosis of apoptotic biliary epithelial cells in primary biliary cirrhosis.

  • Jorge Allina‎ et al.
  • Journal of autoimmunity‎
  • 2006‎

Primary biliary cirrhosis (PBC) is characterized by loss of tolerance against ubiquitously expressed mitochondrial autoantigens followed by biliary and salivary gland epithelial cell (BEC and SGEC) destruction by autoreactive T cells. It is unclear why BECs and SGECs are targeted. Previous work demonstrated that the reduced form of the major PBC autoantigen predominated in apoptotic BECs and SGECs as opposed to an oxidized form in other apoptotic cells. This led to the hypothesis that presentation of novel self-peptides from phagocytosed apoptotic BECs might contribute to BEC targeting by autoreactive T cells. The effect of autoantigen redox status on self-peptide formation was examined along with the phagocytic ability of BECs. Oxidation of PBC autoantigens first was shown to be due to protein S-glutathionylation of lipoyllysine residues. Absence of protein S-glutathionylation generated novel self-peptides and affected T cell recognition of a lipoyllysine containing peptide. Liver biopsy staining revealed BEC phagocytosis of apoptotic BECs (3.74+/-2.90% of BEC) was present in PBC (7 of 7 cases) but not in normal livers (0 of 3). BECs have the ability to present novel mitochondrial self-peptides derived from phagocytosed apoptotic BECs. Apoptotic cell phagocytosis by non-professional phagocytes may influence the tissue specificity of autoimmune diseases.


Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis.

  • Yu Zhu‎ et al.
  • Stem cell research & therapy‎
  • 2017‎

Osteoarthritis (OA) is the most common joint disease worldwide. In the past decade, mesenchymal stem cells (MSCs) have been used widely for the treatment of OA. A potential mechanism of MSC-based therapies has been attributed to the paracrine secretion of trophic factors, in which exosomes may play a major role. In this study, we aimed to compare the effectiveness of exosomes secreted by synovial membrane MSCs (SMMSC-Exos) and exosomes secreted by induced pluripotent stem cell-derived MSCs (iMSC-Exos) on the treatment of OA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: