2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 197 papers

Blocking stroke-induced immunodeficiency increases CNS antigen-specific autoreactivity but does not worsen functional outcome after experimental stroke.

  • Christine Römer‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2015‎

Stroke-induced immunodepression (SIDS) is an essential cause of poststroke infections. Pharmacological inhibition of SIDS appears promising in preventing life-threatening infections in stroke patients. However, SIDS might represent an adaptive mechanism preventing autoreactive immune responses after stroke. To address this, we used myelin oligodendrocyte glycoprotein (MOG) T-cell receptor transgenic (2D2) mice where >80% of peripheral CD4(+) T cells express a functional receptor for MOG. We investigated in a murine model of middle cerebral artery occlusion the effect of blocking SIDS by inhibiting body's main stress axes, the sympathetic nervous system (SNS) with propranolol and the hypothalamic-pituitary-adrenal axis (HPA) with mifepristone. Blockade of both stress axes robustly reduced infarct volumes, decreased infection rate, and increased long-term survival of 2D2 and C57BL/6J wild-type mice. Despite these protective effects, blockade of SIDS increased CNS antigen-specific Type1 T helper cell (Th1) responses in the brains of 2D2 mice 14 d after middle cerebral artery occlusion. One month after experimental stroke, 2D2 mice developed signs of polyradiculitis, which were diminished by SIDS blockade. Adoptive transfer of CD4(+) T cells, isolated from 2D2 mice, into lymphocyte-deficient Rag-1KO mice did not reveal differences between SIDS blockade and vehicle treatment in functional long-term outcome after stroke. In conclusion, inhibiting SIDS by pharmacological blockade of body's stress axes increases autoreactive CNS antigen-specific T-cell responses in the brain but does not worsen functional long-term outcome after experimental stroke, even in a mouse model where CNS antigen-specific autoreactive T-cell responses are boosted.


Synthesis and anti-influenza virus activities of a novel class of gastrodin derivatives.

  • Si-Tu Xue‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2013‎

A series of substituted aryl glycoside analogues of gastrodin have been identified as potential anti-influenza agents. The most potent inhibitor 1a exhibited moderate inhibitory activity against the A/Hanfang/359/95(H3N2) and A/FM/1/47(H1N1) strains of the influenza A virus (IC(50) values of 44.40 and 34.45 μM, respectively) and the oseltamivir-null B/Jifang/13/97 strain of influenza B (IC(50) value of 33.01 μM). In this article, multiple doses of compound 1a (80 mg/kg/day, oral administration) were used for the treatment of mice infected with influenza A/FM/1/47-MA (H1N1), and surprisingly we found that compound 1a significantly increased the number of survivors and prolonged the mean survival time. The preliminary studies on the mechanism of antiviral activity showed no interaction between compound 1a and the neuraminidase or the M2 protein. The novel target to overcome drug resistance combined with its good in vivo profile support compound 1a to be a new lead for further development of antiviral agents.


A deep intronic mutation in the ankyrin-1 gene causes diminished protein expression resulting in hemolytic anemia in mice.

  • Hua Huang‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2013‎

Linkage between transmembrane proteins and the spectrin-based cytoskeleton is necessary for membrane elasticity of red blood cells. Mutations of the proteins that mediate this linkage result in various types of hemolytic anemia. Here we report a novel N-ethyl-N-nitrosourea-induced mutation of ankyrin-1, named hema6, which causes hereditary spherocytosis in mice through a mild reduction of protein expression. The causal mutation was traced to a single nucleotide transition located deep into intron 13 of gene Ank1. In vitro minigene splicing assay revealed two abnormally spliced transcripts containing cryptic exons from fragments of Ank1 intron 13. The inclusion of cryptic exons introduced a premature termination codon, which leads to nonsense-mediated decay of the mutant transcripts in vivo. Hence, in homozygous mice, only wild-type ankyrin-1 is expressed, albeit at 70% of the level in wild-type mice. Heterozygotes display a similar hereditary spherocytosis phenotype stemming from intermediate protein expression level, indicating the haploinsufficiency of the mutation. Weakened linkage between integral transmembrane protein, band 3, and underlying cytoskeleton was observed in mutant mice as the result of reduced high-affinity binding sites provided by ankyrin-1. Hema6 is the only known mouse mutant of Ank1 allelic series that expresses full-length canonical ankyrin-1 at a reduced level, a fact that makes it particularly useful to study the functional impact of ankyrin-1 quantitative deficiency.


Porcine methionine sulfoxide reductase B3: molecular cloning, tissue-specific expression profiles, and polymorphisms associated with ear size in Sus scrofa.

  • Yuebo Zhang‎ et al.
  • Journal of animal science and biotechnology‎
  • 2015‎

In Sus scrofa, methionine sulfoxide reductase B3 (MSRB3) is a crucial candidate gene for ear size, and an important conformational trait of pig breeds. However, challenges in MSRB3 cDNA amplification have prevented further identification of MSRB3 allelic variants influencing pig ear size.


Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers.

  • Shanshan He‎ et al.
  • Nature communications‎
  • 2015‎

Autophagy-related factors are implicated in metabolic adaptation and cancer metastasis. However, the role of autophagy factors in cancer progression and their effect in treatment response remain largely elusive. Recent studies have shown that UVRAG, a key autophagic tumour suppressor, is mutated in common human cancers. Here we demonstrate that the cancer-related UVRAG frameshift (FS), which does not result in a null mutation, is expressed as a truncated UVRAG(FS) in colorectal cancer (CRC) with microsatellite instability (MSI), and promotes tumorigenesis. UVRAG(FS) abrogates the normal functions of UVRAG, including autophagy, in a dominant-negative manner. Furthermore, expression of UVRAG(FS) can trigger CRC metastatic spread through Rac1 activation and epithelial-to-mesenchymal transition, independently of autophagy. Interestingly, UVRAG(FS) expression renders cells more sensitive to standard chemotherapy regimen due to a DNA repair defect. These results identify UVRAG as a new MSI target gene and provide a mechanism for UVRAG participation in CRC pathogenesis and treatment response.


Olfactory Ensheathing Cell Transplantation in Experimental Spinal Cord Injury: Effect size and Reporting Bias of 62 Experimental Treatments: A Systematic Review and Meta-Analysis.

  • Ralf Watzlawick‎ et al.
  • PLoS biology‎
  • 2016‎

Olfactory ensheathing cell (OEC) transplantation is a candidate cellular treatment approach for human spinal cord injury (SCI) due to their unique regenerative potential and autologous origin. The objective of this study was, through a meta-epidemiologic approach, (i) to assess the efficacy of OEC transplantation on locomotor recovery after traumatic experimental SCI and (ii) to estimate the likelihood of reporting bias and/or missing data. A study protocol was finalized before data collection. Embedded into a systematic review and meta-analysis, we conducted a literature research of databases including PubMed, EMBASE, and ISI Web of Science from 1949/01 to 2014/10 with no language restrictions, screened by two independent investigators. Studies were included if they assessed neurobehavioral improvement after traumatic experimental SCI, administrated no combined interventions, and reported the number of animals in the treatment and control group. Individual effect sizes were pooled using a random effects model. Details regarding the study design were extracted and impact of these on locomotor outcome was assessed by meta-regression. Missing data (reporting bias) was determined by Egger regression and Funnel-plotting. The primary study outcome assessed was improvement in locomotor function at the final time point of measurement. We included 49 studies (62 experiments, 1,164 animals) in the final analysis. The overall improvement in locomotor function after OEC transplantation, measured using the Basso, Beattie, and Bresnahan (BBB) score, was 20.3% (95% CI 17.8-29.5). One missing study was imputed by trim and fill analysis, suggesting only slight publication bias and reducing the overall effect to a 19.2% improvement of locomotor activity. Dose-response ratio supports neurobiological plausibility. Studies were assessed using a 9-point item quality score, resulting in a median score of 5 (interquartile range [IQR] 3-5). In conclusion, OEC transplantation exerts considerable beneficial effects on neurobehavioral recovery after traumatic experimental SCI. Publication bias was minimal and affirms the translational potential of efficacy, but safety cannot be adequately assessed. The data justify OECs as a cellular substrate to develop and optimize minimally invasive and safe cellular transplantation paradigms for the lesioned spinal cord embedded into state-of-the-art Phase I/II clinical trial design studies for human SCI.


Association study and mutation sequencing of genes on chromosome 15q11-q13 identified GABRG3 as a susceptibility gene for autism in Chinese Han population.

  • Linyan Wang‎ et al.
  • Translational psychiatry‎
  • 2018‎

Cytogenetic studies suggested that chromosome 15q11-q13 might be a candidate region that increases the risk of autism. Previous association studies in Caucasian populations identified the risk variants of genes in this region. However, the association of these genes with autism in Chinese Han population remains unclear. Herein, 512 autism trios were utilized for a family-based association study of 41 tag single nucleotide polymorphisms (SNPs) in this region to explore the association between protein-coding genes on chromosome 15q11-q13 and autism in Chinese Han population. Furthermore, we sequenced these autism-related genes to detect rare variants in 512 autism trios and 575 healthy controls. Our results showed that the C allele of rs7180500 in GABRG3 was a risk variant for autism (p = 0.00057). The expression quantitative trait loci (eQTL) analysis revealed that the C allele of rs7180500 might be associated with the expression of GABRG3 in the cerebellum (Braineac: p = 0.0048; GTEx: p = 0.0010). Moreover, the sequencing identified two rare variants rs201602655 (p.Val233Met) and rs201427468 (p.Pro365Ser) in GABRG3 and six rare variants in GABRB3 in autistic patients. Among these variants, rs201602655 (p.Val233Met) in GABRG3 were observed in 9 of 512 autistic children and 2 of 575 healthy controls (Pearson χ2-test, χ2 = 5.375, p = 0.020). The functional prediction indicated that rs201602655 (p.Val233Met) might be deleterious. Thus, these findings demonstrated that GABRG3 might contribute to the pathogenesis of autism in Chinese Han population.


Effects of traditional Chinese exercise on cardiac rehabilitation after percutaneous coronary intervention: study protocol for network meta-analysis of randomised controlled trials.

  • Chuanjin Luo‎ et al.
  • BMJ open‎
  • 2019‎

Coronary heart disease (CHD) is the most common cause of death worldwide. Percutaneous coronary intervention (PCI) has been shown to reduce mortality in patients with CHD. However, there are still recurrences of cardiovascular events after PCI. Cardiac rehabilitation (CR) in patients with established CHD is associated with reductions in cardiovascular mortality and hospital admissions, as well as improved quality of life. More and more clinical trials suggest that traditional Chinese exercise (TCE) plays a positive role in patients post-PCI. The primary purposes of the current study are to conduct a network meta-analysis of randomised trials to determine the effects of TCE in patients after PCI, and to separately compare the effects of tai chi, baduanjin and yijinjing on CR after PCI.


Midostaurin reduces Regulatory T cells markers in Acute Myeloid Leukemia.

  • Lucas Gutierrez‎ et al.
  • Scientific reports‎
  • 2018‎

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy in which the only curative approach is allogeneic stem cell transplant (Allo-HSCT). The recognition and elimination of leukemic clones by donor T-cells contribute significantly to Allo-HSCT success. FLT3-ITD, a common mutation in AML, is associated with poor prognosis. Recently, midostaurin became the first FDA approved FLT3-inhibitor for pre-transplant patients with FLT3-ITD in combination with standard therapy. In addition to their multikinase activity which may affect T-cell signaling, FLT3-inhibitors induce apoptosis of malignant cells which may also enhance antigen presentation to activate T-cells. Considering the increased clinical use of these inhibitors in patients with AML, and the limited clinical benefit derived from their use as single agents, understanding how FLT3-inhibitors affect T cell population and function is needed to improve their clinical benefit. We examined the effect of four different FLT3 inhibitors (midostaurin, sorafenib, tandutinib, and quizartenib) on T cell populations in peripheral blood mononuclear cells (PBMC) obtained from healthy donors and from patients with AML. Midostaurin exhibited a significant decrease in CD4 + CD25 + FOXP3+ T cell population and FOXP3 mRNA expression in healthy and AML PBMCs. Similarly, samples collected from patients with AML treated with midostaurin showed a reduction in Tregs markers. Interferon-γ(IFN-γ), tumor necrosis factor-α(TNF-α), and IL-10 levels were also reduced following midostaurin treatment. Considering the FDA approval of midostaurin for use in patients with AML in the pre-transplant setting, our finding will have important clinical implication as it provides the rationale for functional investigation of the use of midostaurin in post-transplant patients.


Meta-analysis of GABRB2 polymorphisms and the risk of schizophrenia combined with GWAS data of the Han Chinese population and psychiatric genomics consortium.

  • Tian Zhang‎ et al.
  • PloS one‎
  • 2018‎

Schizophrenia (SCZ) is a severe psychiatric disorder with evidence of a strong genetic component in the complex etiologies. Some studies indicated that gamma-aminobutyric acid (GABA)A receptor β2 subunit gene (GABRB2) was associated with SCZ. Other studies reported a negative association. Moreover, the results of two previous meta-analyses of GABRB2 with SCZ were inconsistent and the sample sizes were limited. Therefore, an updated meta-analysis combined with genome-wide association study (GWAS) data of the Han Chinese population and Psychiatric Genomics Consortium (PGC) was performed. Available case-control and family-based genetic data were extracted from association studies, and the GWAS data were included. The findings showed no association between six single-nucleotide polymorphisms of GABRB2 (rs6556547, rs1816071, rs1816072, rs194072, rs252944, and rs187269) and SCZ in a total of 51,491 patients and 74,667 controls. The ethnic subgroup analysis revealed no significant association in Asian populations. Since the PGC data of SCZ (SCZ-PGC, 2014) contained 3 studies of Asian populations (1866 patients and 3418 controls), only the data of European samples in SCZ-PGC were used for the meta-analysis of the Caucasian population in the present study. The result still showed no association in the Caucasian population. In conclusion, the present meta-analysis on combined data from GWASs of the Han Chinese population and PGC suggested that GABRB2 polymorphisms might not be associated with SCZ.


Inhibition of PC4 radiosensitizes non-small cell lung cancer by transcriptionally suppressing XLF.

  • Tian Zhang‎ et al.
  • Cancer medicine‎
  • 2018‎

Positive cofactor 4 (PC4) participates in DNA damage repair and involved in nonhomologous end joining (NHEJ). Our previous results demonstrated that knockdown of PC4 downregulated the expression of XRCC4-like factor (XLF) in esophageal squamous cell carcinoma. However, the mechanism how PC4 regulates the expression of XLF remains unclear. Here, we found that knockdown of PC4 increased radiosensitivity of non-small cell lung cancer (NSCLC) both in vivo and in vitro. Furthermore, we found that PC4 knockdown downregulated the expression of XLF, whereas recovering XLF expression restored radioresistance in the PC4-knockdown NSCLC cells. In addition, PC4 knockdown inhibited XLF expression by transcriptionally suppressing of XLF. Moreover, PC4 expression correlated with radiosensitivity and was an independent prognostic factor of progression-free survival (PFS) in patients with NSCLC. These findings suggest that PC4 could be used as a promising therapeutic target for NSCLC.


Family-based association study of ZNF804A polymorphisms and autism in a Han Chinese population.

  • Ziqi Wang‎ et al.
  • BMC psychiatry‎
  • 2019‎

Autism is a complex neurodevelopmental disorder with high heritability. Zinc finger protein 804A (ZNF804A) was suggested to play important roles in neurodevelopment. Previous studies indicated that single-nucleotide polymorphism (SNP) rs1344706 in ZNF804A was strongly associated with schizophrenia and might influence social interaction. Only one study explored the significance of ZNF804A polymorphisms in autism, which discovered that rs7603001 was nominally associated with autism. Moreover, no previous study investigated the association between ZNF804A and autism in a Han Chinese population. Here, we investigated whether these two SNPs (rs1344706 and rs7603001) in ZNF804A contribute to the risk of autism in a Han Chinese population.


High glucose provokes microvesicles generation from glomerular podocytes via NOX4/ROS pathway.

  • Mingzhen Li‎ et al.
  • Bioscience reports‎
  • 2019‎

Microvesicles (MVs) were involved in the pathogenesis of many diseases, such as cardiovascular diseases and diabetes. Oxidative stress played a key role in the development and progression of diabetic nephropathy (DN). Our aim of the present study was to investigate whether high glucose (HG) could provoke MVs generation from podocytes and its potential mechanism. Mouse podocyte clone 5 (MPC-5) was stimulated by HG. The intracellular reactive oxygen species (ROS) of podocytes were measured by fluorescence microscopy with the probe of CM-H2DCFDA and MitoSOX™. Antioxidants N-Acetyl-l-cysteine (NAC) and α lipoic acid (α-LA) were used to treat podocytes after HG stimulation. The rate of podocyte apoptosis was evaluated with Annexin V-FITC by flow cytometry. NOX4 expression was examined and siRNA were performed to explore the mechanism of MVs generation. The quantities of MVs from MPC-5 cells was significantly increased (P<0.05) by 4.6-times after 30 mM glucose stimulation, accompanied with double increased apoptosis. Cellular ROS generation was increased by HG at the peak of 48 h stimulation. HG-induced MVs were significantly decreased by 52.9% after pretreatment by antioxidant NAC. Nevertheless, mitochondrial ROS in podocytes reached a peak at 4 h stimulation, but specific antioxidant α-LA had no effect on the production of MVs (P>0.05). Levels of NOX4 mRNA and protein expression were significantly up-regulated by HG (P<0.05). Podocyte-derived MVs by HG were eliminated by NOX4 siRNA. HG can provoke MVs generation from glomerular podocytes through ROS/NOX4 pathway, not from mitochondrial pathway.


Deficiency of CD147 Attenuated Non-alcoholic Steatohepatitis Progression in an NLRP3-Dependent Manner.

  • Tian Zhang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Cluster of differentiation 147 (CD147) is a transmembrane glycoprotein belonging to the immunoglobulin superfamily. CD147 overexpression has been reported to facilitate the development of hepatocellular carcinoma (HCC) and influence immunologic disorders. Although increased expression of CD147 was reported in non-alcoholic steatohepatitis (NASH), functions of CD147 in NASH have not been evaluated. Firstly, we confirmed that CD147 expression was increased in the liver tissues from methionine-choline-deficient (MCD) diet-induced NASH model mice and NASH patients. Mice with hepatocyte-specific CD147 deletion exhibited attenuated NASH phenotypes, including reduced steatosis, liver injury, hepatocyte apoptosis and inflammatory cytokines IL-1β/IL-18 secretion. Following the administration of the MCD diet, NLRP3 expression was increased gradually along with CD147 expression. Furthermore, CD147 deletion inhibited the NF-κB/NLRP3 signaling pathway in both MCD diet-induced mice and primary hepatocytes. Finally, CypA inhibitor TMN355 attenuated liver steatosis and injury and inhibited NF-κB/NLRP3 signaling pathway. Therefore, our results suggest that CD147 played a vital role in NASH pathogenesis by regulating the inflammatory response, and CypA/CD147 could be attractive therapeutic targets for NASH treatment.


Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy.

  • Yuanzeng Min‎ et al.
  • Nature nanotechnology‎
  • 2017‎

Immunotherapy holds tremendous promise for improving cancer treatment. To administer radiotherapy with immunotherapy has been shown to improve immune responses and can elicit the 'abscopal effect'. Unfortunately, response rates for this strategy remain low. Herein we report an improved cancer immunotherapy approach that utilizes antigen-capturing nanoparticles (AC-NPs). We engineered several AC-NP formulations and demonstrated that the set of protein antigens captured by each AC-NP formulation is dependent on the NP surface properties. We showed that AC-NPs deliver tumour-specific proteins to antigen-presenting cells (APCs) and significantly improve the efficacy of αPD-1 (anti-programmed cell death 1) treatment using the B16F10 melanoma model, generating up to a 20% cure rate compared with 0% without AC-NPs. Mechanistic studies revealed that AC-NPs induced an expansion of CD8+ cytotoxic T cells and increased both CD4+T/Treg and CD8+T/Treg ratios (Treg, regulatory T cells). Our work presents a novel strategy to improve cancer immunotherapy with nanotechnology.


SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity.

  • Jingxin Liu‎ et al.
  • Cell death & disease‎
  • 2017‎

Evidences of oxidative stress and mitochondrial dysfunction have been recognized in most of clinical and experimental liver diseases. SIRT3, a member of NAD+-dependent deacetylases, is mainly localized in mitochondria. So far, the role of SIRT3 in protecting hepatocytes against oxidative stress remains elusive. Herein, we found SIRT3 protein expression is decreased in tert-butyl hydroperoxide (t-BHP)-treated AML12 cells in vitro and primary hepatocytes from CCl4-injured mice in vivo. To further verify the role of SIRT3 in protecting hepatocytes from t-BHP-induced injury, SIRT3 overexpressed AML12 cell line and primary hepatocytes were generated. SIRT3 overexpressed hepatocytes showed improved cell viability upon t-BHP challenge, with less intracellular reactive oxygen species (ROS) accumulation. SIRT3 overexpression reduced superoxide dismutase 2 acetylation level and stimulated nuclear factor erythroid 2-related factor 2 nuclear translocation to enhance anti-oxidative capacity. Moreover, SIRT3 deacetylated peroxisome proliferator-activated receptor γ coactivator 1α to promote mitochondrial biogenesis, and 8-oxoguanine DNA glycosylase 1 to orchestrate DNA repair, resulting in improved mitochondrial function. Through deacetylating Ku70, SIRT3 also abated mitochondrial translocation of dynamin-related protein 1, to attenuate mitochondrial fragmentation in t-BHP-injured hepatocytes. These results suggested that SIRT3 protected hepatocytes against oxidative stress by enhancing ROS scavenging and maintaining mitochondrial integrity.


Platelet-to-lymphocyte ratio is an independent predictor of chemoradiotherapy-related esophageal fistula in esophageal cancer patients.

  • Dong Han‎ et al.
  • Annals of translational medicine‎
  • 2020‎

Neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) are all markers of systemic inflammation response. The role of systemic inflammation in the development of esophageal fistula (EF) has yet to be defined. This study aimed to investigate the predictive value of hematologic measures of inflammation and to set up a predictive model.


3D Culture Models with CRISPR Screens Reveal Hyperactive NRF2 as a Prerequisite for Spheroid Formation via Regulation of Proliferation and Ferroptosis.

  • Nobuaki Takahashi‎ et al.
  • Molecular cell‎
  • 2020‎

Cancer-associated mutations that stabilize NRF2, an oxidant defense transcription factor, are predicted to promote tumor development. Here, utilizing 3D cancer spheroid models coupled with CRISPR-Cas9 screens, we investigate the molecular pathogenesis mediated by NRF2 hyperactivation. NRF2 hyperactivation was necessary for proliferation and survival in lung tumor spheroids. Antioxidant treatment rescued survival but not proliferation, suggesting the presence of distinct mechanisms. CRISPR screens revealed that spheroids are differentially dependent on the mammalian target of rapamycin (mTOR) for proliferation and the lipid peroxidase GPX4 for protection from ferroptosis of inner, matrix-deprived cells. Ferroptosis inhibitors blocked death from NRF2 downregulation, demonstrating a critical role of NRF2 in protecting matrix-deprived cells from ferroptosis. Interestingly, proteomics analyses show global enrichment of selenoproteins, including GPX4, by NRF2 downregulation, and targeting NRF2 and GPX4 killed spheroids overall. These results illustrate the value of spheroid culture in revealing environmental or spatial differential dependencies on NRF2 and reveal exploitable vulnerabilities of NRF2-hyperactivated tumors.


Polysaccharides extracted from Rheum tanguticum ameliorate radiation-induced enteritis via activation of Nrf2/HO-1.

  • Tian Zhang‎ et al.
  • Journal of radiation research‎
  • 2021‎

Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. The Nrf2/HO-1 pathway is a critical endogenous antioxidant stress pathway, but its precise role in radiation-induced enteritis remains to be clarified. Polysaccharides extracted from Rheum tanguticum (RTP) can protect the intestinal cells from radiation-induced damage, but the underlying mechanism is unknown. SD rats and IEC-6 cells were exposed to 12 or 10 Gy X-ray radiation. Rat survival, and histopathological and immunohistochemical profiles were analyzed at different time points. Indicators of oxidative stress and inflammatory response were also assessed. Cell viability, apoptosis and Nrf2/HO-1 expression were evaluated at multiple time points. Significant changes were observed in the physiological and biochemical indexes of rats after radiation, accompanied by significant oxidative stress response. The mRNA and protein expression of Nrf2 peaked at 12 h after irradiation, and HO-1 expression peaked at 48 h after irradiation. RTP administration reduced radiation-induced intestinal damage, upregulated Nrf2/HO-1, improved physiological indexes, significantly decreased apoptosis and inflammatory factors, and upregulated HO-1, particularly at 48 h after irradiation. In conclusion, Nrf2 is activated in the early stage of radiation-induced intestinal injury and plays a protective role. RTP significantly ameliorates radiation-induced intestinal injury via the regulation of Nrf2 and its downstream protein HO-1.


Myricanol modulates skeletal muscle-adipose tissue crosstalk to alleviate high-fat diet-induced obesity and insulin resistance.

  • Shengnan Shen‎ et al.
  • British journal of pharmacology‎
  • 2019‎

Skeletal muscle is the predominant site for glucose disposal and fatty acid consumption. Emerging evidence indicates that the crosstalk between adipose tissue and skeletal muscle is critical in maintaining insulin sensitivity and lipid homeostasis. The current study was designed to investigate whether myricanol improves insulin sensitivity and alleviates adiposity through modulating skeletal muscle-adipose tissue crosstalk.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: