Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Shape from sound: evidence for a shape operator in the lateral occipital cortex.

  • Thomas W James‎ et al.
  • Neuropsychologia‎
  • 2011‎

A recent view of cortical functional specialization suggests that the primary organizing principle of the cortex is based on task requirements, rather than sensory modality. Consistent with this view, recent evidence suggests that a region of the lateral occipitotemporal cortex (LO) may process object shape information regardless of the modality of sensory input. There is considerable evidence that area LO is involved in processing visual and haptic shape information. However, sound can also carry acoustic cues to an object's shape, for example, when a sound is produced by an object's impact with a surface. Thus, the current study used auditory stimuli that were created from recordings of objects impacting a hard surface to test the hypothesis that area LO is also involved in auditory shape processing. The objects were of two shapes, rods and balls, and of two materials, metal and wood. Subjects were required to categorize the impact sounds in one of three tasks, (1) by the shape of the object while ignoring material, (2) by the material of the object while ignoring shape, or (3) by using all the information available. Area LO was more strongly recruited when subjects discriminated impact sounds based on the shape of the object that made them, compared to when subjects discriminated those same sounds based on material. The current findings suggest that activation in area LO is shape selective regardless of sensory input modality, and are consistent with an emerging theory of perceptual functional specialization of the brain that is task-based rather than sensory modality-based.


Neural segregation and integration of sensory, decision, and action processes during object categorization.

  • Thomas W James‎ et al.
  • Neuropsychologia‎
  • 2023‎

Neural and computational evidence suggests that perceptual decisions depend on an evidence accumulation process. The gradual reveal fMRI method, which prolongs a decision to match the slow temporal resolution of fMRI measurements, has classified dorsal visual stream regions as "Action" (alternatively, "Moment of Recognition" or "Commitment") and ventral visual stream regions as "Accumulator." Previous gradual reveal fMRI studies, however, only tested actions that were in response to decisions and, thus, related to evidence accumulation. To fully dissociate the contribution of sensory, decision, and motor components to Action and Accumulator regions in the dorsal and ventral visual streams, we extended the gradual reveal paradigm to also include responses made to cues where no decision was necessary. We found that the lateral occipital cortex in the ventral visual stream showed a highly selective Accumulator profile, whereas regions in the fusiform gyrus were influenced by action generation. Dorsal visual stream regions showed strikingly similar profiles as classical motor regions and also as regions of the salience network. These results suggest that the dorsal and ventral visual streams may appear highly segregated because they include a small number of regions that are highly selective for Accumulator or Action. However, the streams may be more integrated than previously thought and this integration may be accomplished by regions with graded responses that are less selective (i.e., more distributed).


The response of face-selective cortex with single face parts and part combinations.

  • Lindsay R Arcurio‎ et al.
  • Neuropsychologia‎
  • 2012‎

A critical issue in object recognition research is how the parts of an object are analyzed by the visual system and combined into a perceptual whole. However, most of the previous research has examined how changes to object parts influence recognition of the whole, rather than recognition of the parts themselves. This is particularly true of the research on face recognition, and especially with questions related to the neural substrates. Here, we investigated patterns of BOLD fMRI brain activation with internal face parts (features) presented singly and in different combinations. A preference for single features over combinations was found in the occipital face area (OFA) as well as a preference for the two-eyes combination stimulus over other combination stimulus types. The fusiform face area (FFA) and lateral occipital cortex (LO) showed no preferences among the single feature and combination stimulus types. The results are consistent with a growing view that the OFA represents processes involved in early, feature-based analysis.


Increased Segregation in Functional Connectivity Networks When Watching Unpleasant Arousing Videos: A Generalized Psychophysiological Interaction Analysis.

  • Yuqian Ni‎ et al.
  • Brain connectivity‎
  • 2024‎

Background: Properties of functional connectivity (FC), such as network integration and segregation, are shown to be associated with various human behaviors. For example, Godwin et al. and Sun et al. found increased integration with attention allocation, whereas Cohen and D'Esposito and Shine et al. observed increased segregation with simple motor tasks. The current study investigated how viewing video clips with different valence and arousal influenced integration-segregation properties in task-based FC networks. Methods: We analyzed an open dataset collected by Kim et al. We performed a generalized psychophysiological interaction (gPPI) analysis paired with network analysis and community detection to investigate changes in brain network dynamics when people watched four types of videos that differed by affective valence (unpleasant or pleasant) and arousal (arousing or calm). Results: Results showed that unpleasant arousing videos produced greater FC deviation from the baseline (task-induced FC deviation [tiFCd]) and perturbed the brain into a more segregated state than other kinds of video. Increased segregation was only observed in association systems, not sensorimotor systems. Discussion: Unpleasant arousing content perturbed the brain to a functionally distinct state from the other three types of affective videos. We suggest that the change in brain state was related to people disengaging from the unpleasant arousing content or, alternatively, staying alert while exposed to unpleasant arousing stimuli. The study also added to our understanding of how combining task-based gPPI analysis with community detection methods and network segregation measures can advance our knowledge of the links between behavior and brain state changes. Impact statement Network integration and segregation is an important property of the human brain. We address the question of how affective stimuli influence brain dynamics from a functional connectivity (FC) network integration-segregation perspective. By conducting a whole-brain generalized psychophysiological interaction (gPPI) analysis paired with community detection methods, we found that highly aversive video content induced significant FC changes and perturbed the brain to a more segregated state.


Impact of aversive affect on neural mechanisms of categorization decisions.

  • Daniel J Levitas‎ et al.
  • Brain and behavior‎
  • 2023‎

Many theories contend that evidence accumulation is a critical component of decision-making. Cognitive accumulation models typically interpret two main parameters: a drift rate and decision threshold. The former is the rate of accumulation, based on the quality of evidence, and the latter is the amount of evidence required for a decision. Some studies have found neural signals that mimic evidence accumulators and can be described by the two parameters. However, few studies have related these neural parameters to experimental manipulations of sensory data or memory representations. Here, we investigated the influence of affective salience on neural accumulation parameters. High affective salience has been repeatedly shown to influence decision-making, yet its effect on neural evidence accumulation has been unexamined.


Neural mechanisms of high-risk decisions-to-drink in alcohol-dependent women.

  • Lindsay R Arcurio‎ et al.
  • Addiction biology‎
  • 2015‎

A hallmark of alcohol dependence (AD) is continually drinking despite the risk of negative consequences. Currently, it is not known if the pattern of disordered activation in AD is more compatible with an over-sensitive reward system, a deficit in control systems or a combination of both to produce the high risk-taking behavior observed in alcohol dependents (ADs). Here, alcohol cues were used in an ecological decisions-to-drink task that involved high- and low-risk scenarios where the chance of serious negative imagined consequences was varied. Non-alcohol cues were included as control stimuli. Functional magnetic resonance imaging (fMRI) was used to measure blood oxygen level-dependent (BOLD) signal change in 15 alcohol-dependent and 16 control women. This design allowed us to address two major questions concerning AD: first, is there a specific pattern of disordered activation that drives the heightened endorsement of high-risk decisions-to-drink in ADs? And, second, is that pattern specific to decisions-to-drink or does it generalize to other appetitive and/or neutral cues? The results showed that, during high-risk decisions-to-drink, alcohol-dependent women activated reward circuits, cognitive control circuits and regions of the default-mode network (DMN), while control women deactivated approach circuits and showed enhanced activation in regions of the DMN. Group differences were found only for decisions-to-drink, suggesting that they are specific to alcohol cues. Simultaneous activation of reward networks, cognitive control networks and the DMN in alcohol-dependent women suggests that over-endorsement of high-risk drinking decisions by alcohol-dependent women may be due to a problem with switching between different neural networks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: