Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Prediction of developmental chemical toxicity based on gene networks of human embryonic stem cells.

  • Junko Yamane‎ et al.
  • Nucleic acids research‎
  • 2016‎

Predictive toxicology using stem cells or their derived tissues has gained increasing importance in biomedical and pharmaceutical research. Here, we show that toxicity category prediction by support vector machines (SVMs), which uses qRT-PCR data from 20 categorized chemicals based on a human embryonic stem cell (hESC) system, is improved by the adoption of gene networks, in which network edge weights are added as feature vectors when noisy qRT-PCR data fail to make accurate predictions. The accuracies of our system were 97.5-100% for three toxicity categories: neurotoxins (NTs), genotoxic carcinogens (GCs) and non-genotoxic carcinogens (NGCs). For two uncategorized chemicals, bisphenol-A and permethrin, our system yielded reasonable results: bisphenol-A was categorized as an NGC, and permethrin was categorized as an NT; both predictions were supported by recently published papers. Our study has two important features: (i) as the first study to employ gene networks without using conventional quantitative structure-activity relationships (QSARs) as input data for SVMs to analyze toxicogenomics data in an hESC validation system, it uses additional information of gene-to-gene interactions to significantly increase prediction accuracies for noisy gene expression data; and (ii) using only undifferentiated hESCs, our study has considerable potential to predict late-onset chemical toxicities, including abnormalities that occur during embryonic development.


Report of the International Stem Cell Banking Initiative Workshop Activity: Current Hurdles and Progress in Seed-Stock Banking of Human Pluripotent Stem Cells.

  • Jung-Hyun Kim‎ et al.
  • Stem cells translational medicine‎
  • 2017‎

This article summarizes the recent activity of the International Stem Cell Banking Initiative (ISCBI) held at the California Institute for Regenerative Medicine (CIRM) in California (June 26, 2016) and the Korean National Institutes for Health in Korea (October 19-20, 2016). Through the workshops, ISCBI is endeavoring to support a new paradigm for human medicine using pluripotent stem cells (hPSC) for cell therapies. Priority considerations for ISCBI include ensuring the safety and efficacy of a final cell therapy product and quality assured source materials, such as stem cells and primary donor cells. To these ends, ISCBI aims to promote global harmonization on quality and safety control of stem cells for research and the development of starting materials for cell therapies, with regular workshops involving hPSC banking centers, biologists, and regulatory bodies. Here, we provide a brief overview of two such recent activities, with summaries of key issues raised. Stem Cells Translational Medicine 2017;6:1956-1962.


A Standard Nomenclature for Referencing and Authentication of Pluripotent Stem Cells.

  • Andreas Kurtz‎ et al.
  • Stem cell reports‎
  • 2018‎

Unambiguous cell line authentication is essential to avoid loss of association between data and cells. The risk for loss of references increases with the rapidity that new human pluripotent stem cell (hPSC) lines are generated, exchanged, and implemented. Ideally, a single name should be used as a generally applied reference for each cell line to access and unify cell-related information across publications, cell banks, cell registries, and databases and to ensure scientific reproducibility. We discuss the needs and requirements for such a unique identifier and implement a standard nomenclature for hPSCs, which can be automatically generated and registered by the human pluripotent stem cell registry (hPSCreg). To avoid ambiguities in PSC-line referencing, we strongly urge publishers to demand registration and use of the standard name when publishing research based on hPSC lines.


SERPINI1 regulates epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer.

  • Yasufumi Matsuda‎ et al.
  • Cancer science‎
  • 2016‎

An increasingly accepted concept is that the progression of colorectal cancer is accompanied by epithelial-mesenchymal transition (EMT). In our study, in order to characterize the properties of EMT in 16 colorectal cancer cell lines, the cells were first orthotopically implanted into nude mice, and the tumors in vivo, as well as cells cultured in vitro, were immunostained for EMT markers. The immunostaining revealed that seven of the cells had an epithelial phenotype with a high expression of E-cadherin, whereas other cells showed opposite patterns, such as a high expression of vimentin (CX-1, COLO205, CloneA, HCT116, and SW48). Among the cells expressing vimentin, some expressed vimentin in the orthotopic tumors but not in the cultured cells (SW480, SW620, and COLO320). We evaluated these findings in combination with microarray analyses, and selected five genes: CHST11, SERPINI1, AGR2, FBP1, and FOXA1. Next, we downregulated the expression of SERPINI1 with siRNA in the cells, the results of which showed reverse-EMT changes at the protein level and in the cellular morphology. Along with immunohistochemical analyses, we confirmed the effect of the intracellular and secreted SERPINI1 protein of SW620 cells, which supported the importance of SERPINI1 in EMT. The development of therapeutic strategies targeting EMT is ongoing, including methods targeting the transforming growth factor-β signaling pathway as well as the Wnt pathway. SERPINI1 is an important regulator of EMT. Our findings help to elucidate the signaling pathways of EMT, hopefully clarifying therapeutic pathways as well.


Up-regulation of MSX2 enhances the malignant phenotype and is associated with twist 1 expression in human pancreatic cancer cells.

  • Kennichi Satoh‎ et al.
  • The American journal of pathology‎
  • 2008‎

MSX2 is thought to be a regulator of organ development and a downstream target of the ras signaling pathway; however, little is known about the role of MSX2 in the development of pancreatic cancers, most of which harbor a K-ras gene mutation. Therefore, we examined whether the presence of MSX2 correlates with the malignant behavior of pancreatic cancer cells. BxPC3 pancreatic cancer cells that stably overexpress MSX2 showed a flattened and scattered morphology accompanied by a change in localization of E-cadherin and beta-catenin from membrane to cytoplasm. Cell proliferation rate, cell migration, and anchorage-independent cell growth were enhanced in MSX2-expressing cells. Injection of MSX2-expressing cells into the pancreas of nude mice resulted in a significant increase in liver metastases and peritoneal disseminations compared with injection of control cells. Microarray analysis revealed a significant induction of Twist 1 expression in cells that express MSX2. When MSX2 was inactivated in pancreatic cancer cells following transfection with an MSX2-specific small interfering RNA, Twist 1 was down-regulated. Immunohistochemistry of human pancreatic carcinoma tissue revealed that MSX2 was frequently expressed in cancer cells, and that increased expression of MSX2 significantly correlated with higher tumor grade, vascular invasion, and Twist 1 expression. These data indicate that MSX2 plays a crucial role in pancreatic cancer development by inducing changes consistent with epithelial to mesenchymal transition through enhanced expression of Twist 1.


Human Cell Atlas and cell-type authentication for regenerative medicine.

  • Yulia Panina‎ et al.
  • Experimental & molecular medicine‎
  • 2020‎

In modern biology, the correct identification of cell types is required for the developmental study of tissues and organs and the production of functional cells for cell therapies and disease modeling. For decades, cell types have been defined on the basis of morphological and physiological markers and, more recently, immunological markers and molecular properties. Recent advances in single-cell RNA sequencing have opened new doors for the characterization of cells at the individual and spatiotemporal levels on the basis of their RNA profiles, vastly transforming our understanding of cell types. The objective of this review is to survey the current progress in the field of cell-type identification, starting with the Human Cell Atlas project, which aims to sequence every cell in the human body, to molecular marker databases for individual cell types and other sources that address cell-type identification for regenerative medicine based on cell data guidelines.


Long non-coding RNA HOTAIR promotes cell migration by upregulating insulin growth factor-binding protein 2 in renal cell carcinoma.

  • Hiromichi Katayama‎ et al.
  • Scientific reports‎
  • 2017‎

Renal cell carcinoma (RCC) is one of the most lethal urologic cancers. About one-third of RCC patients already have distal metastasis at the time of diagnosis. There is growing evidence that Hox antisense intergenic RNA (HOTAIR) plays essential roles in metastasis in several types of cancers. However, the precise mechanism by which HOTAIR enhances malignancy remains unclear, especially in RCC. Here, we demonstrated that HOTAIR enhances RCC-cell migration by regulating the insulin growth factor-binding protein 2 (IGFBP2) expression. HOTAIR expression in tumors was significantly correlated with nuclear grade, lymph-node metastasis, and lung metastasis. High HOTAIR expression was associated with a poor prognosis in both our dataset and The Cancer Genome Atlas dataset. Migratory capacity was enhanced in RCC cell lines in a HOTAIR-dependent manner. HOTAIR overexpression accelerated tumorigenicity and lung metastasis in immunodeficient mice. Microarray analysis revealed that IGFBP2 expression was upregulated in HOTAIR-overexpressing cells compared with control cells. The enhanced migration activity of HOTAIR-overexpressing cells was attenuated by IGFBP2 knockdown. IGFBP2 and HOTAIR were co-expressed in clinical RCC samples. Our findings suggest that the HOTAIR-IGFBP2 axis plays critical roles in RCC metastasis and may serve as a novel therapeutic target for advanced RCC.


Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles.

  • Toshiki Aiba‎ et al.
  • BMC molecular biology‎
  • 2017‎

It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP.


PeakRegressor identifies composite sequence motifs responsible for STAT1 binding sites and their potential rSNPs.

  • Jean-François Pessiot‎ et al.
  • PloS one‎
  • 2010‎

How to identify true transcription factor binding sites on the basis of sequence motif information (e.g., motif pattern, location, combination, etc.) is an important question in bioinformatics. We present "PeakRegressor," a system that identifies binding motifs by combining DNA-sequence data and ChIP-Seq data. PeakRegressor uses L1-norm log linear regression in order to predict peak values from binding motif candidates. Our approach successfully predicts the peak values of STAT1 and RNA Polymerase II with correlation coefficients as high as 0.65 and 0.66, respectively. Using PeakRegressor, we could identify composite motifs for STAT1, as well as potential regulatory SNPs (rSNPs) involved in the regulation of transcription levels of neighboring genes. In addition, we show that among five regression methods, L1-norm log linear regression achieves the best performance with respect to binding motif identification, biological interpretability and computational efficiency.


Network-based de-noising improves prediction from microarray data.

  • Tsuyoshi Kato‎ et al.
  • BMC bioinformatics‎
  • 2006‎

Prediction of human cell response to anti-cancer drugs (compounds) from microarray data is a challenging problem, due to the noise properties of microarrays as well as the high variance of living cell responses to drugs. Hence there is a strong need for more practical and robust methods than standard methods for real-value prediction.


CELLPEDIA: a repository for human cell information for cell studies and differentiation analyses.

  • Akiko Hatano‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2011‎

CELLPEDIA is a repository database for current knowledge about human cells. It contains various types of information, such as cell morphologies, gene expression and literature references. The major role of CELLPEDIA is to provide a digital dictionary of human cells for the biomedical field, including support for the characterization of artificially generated cells in regenerative medicine. CELLPEDIA features (i) its own cell classification scheme, in which whole human cells are classified by their physical locations in addition to conventional taxonomy; and (ii) cell differentiation pathways compiled from biomedical textbooks and journal papers. Currently, human differentiated cells and stem cells are classified into 2260 and 66 cell taxonomy keys, respectively, from which 934 parent-child relationships reported in cell differentiation or transdifferentiation pathways are retrievable. As far as we know, this is the first attempt to develop a digital cell bank to function as a public resource for the accumulation of current knowledge about human cells. The CELLPEDIA homepage is freely accessible except for the data submission pages that require authentication (please send a password request to cell-info@cbrc.jp). Database URL: http://cellpedia.cbrc.jp/


Banking human induced pluripotent stem cells: lessons learned from embryonic stem cells?

  • Glyn N Stacey‎ et al.
  • Cell stem cell‎
  • 2013‎

The generation of human embryonic stem cell banking networks has ensured that well-characterized and quality controlled stem cell lines are broadly accessible to researchers worldwide. Here, we provide recommendations for engaging these established networks in efforts to build similar resources for the distribution and collection of induced pluripotent stem cells.


Integrated Collection of Stem Cell Bank Data, a Data Portal for Standardized Stem Cell Information.

  • Ying Chen‎ et al.
  • Stem cell reports‎
  • 2021‎

The past decade has witnessed an extremely rapid increase in the number of newly established stem cell lines. However, due to the lack of a standardized format, data exchange among stem cell line resources has been challenging, and no system can search all stem cell lines across resources worldwide. To solve this problem, we have developed the Integrated Collection of Stem Cell Bank data (ICSCB) (http://icscb.stemcellinformatics.org/), the largest database search portal for stem cell line information, based on the standardized data items and terms of the MIACARM framework. Currently, ICSCB can retrieve >16,000 cell lines from four major data resources in Europe, Japan, and the United States. ICSCB is automatically updated to provide the latest cell line information, and its integrative search helps users collect cell line information for over 1,000 diseases, including many rare diseases worldwide, which has been a formidable task, thereby distinguishing itself from other database search portals.


Does the prenatal bisphenol A exposure alter DNA methylation levels in the mouse hippocampus?: An analysis using a high-sensitivity methylome technique.

  • Toshiki Aiba‎ et al.
  • Genes and environment : the official journal of the Japanese Environmental Mutagen Society‎
  • 2018‎

There is still considerable debate about the effects of exposure to bisphenol A (BPA) an endocrine disrupter at low doses. Recently, many studies using animal models have shown that prenatal BPA exposure induces behavioral and neuronal disorders due to epigenetic changes in the brain. However, striking evidence of epigenomic changes has to be shown.


Tracking difference in gene expression in a time-course experiment using gene set enrichment analysis.

  • Pui Shan Wong‎ et al.
  • PloS one‎
  • 2014‎

Fistulifera sp. strain JPCC DA0580 is a newly sequenced pennate diatom that is capable of simultaneously growing and accumulating lipids. This is a unique trait, not found in other related microalgae so far. It is able to accumulate between 40 to 60% of its cell weight in lipids, making it a strong candidate for the production of biofuel. To investigate this characteristic, we used RNA-Seq data gathered at four different times while Fistulifera sp. strain JPCC DA0580 was grown in oil accumulating and non-oil accumulating conditions. We then adapted gene set enrichment analysis (GSEA) to investigate the relationship between the difference in gene expression of 7,822 genes and metabolic functions in our data. We utilized information in the KEGG pathway database to create the gene sets and changed GSEA to use re-sampling so that data from the different time points could be included in the analysis. Our GSEA method identified photosynthesis, lipid synthesis and amino acid synthesis related pathways as processes that play a significant role in oil production and growth in Fistulifera sp. strain JPCC DA0580. In addition to GSEA, we visualized the results by creating a network of compounds and reactions, and plotted the expression data on top of the network. This made existing graph algorithms available to us which we then used to calculate a path that metabolizes glucose into triacylglycerol (TAG) in the smallest number of steps. By visualizing the data this way, we observed a separate up-regulation of genes at different times instead of a concerted response. We also identified two metabolic paths that used less reactions than the one shown in KEGG and showed that the reactions were up-regulated during the experiment. The combination of analysis and visualization methods successfully analyzed time-course data, identified important metabolic pathways and provided new hypotheses for further research.


Generation of seven induced pluripotent stem cell lines from neonates of different ethnic backgrounds.

  • Yingnan Yin‎ et al.
  • Stem cell research‎
  • 2019‎

Seven human induced pluripotent stem cell (iPSC) lines were generated from fibroblasts from three neonatal individuals using non-integrative reprogramming. Most control iPSCs are derived from adults, so these iPSCs meet the need for control iPSCs from young individuals. Donors were from different ethnicities and these lines provide unique genetic profiles. All iPSCs have normal karyotypes, express stem cell markers, and exhibit pluripotency, as assessed by capacity to differentiate into three germ layers. These lines are valuable to study human development, as age-matched controls for disorder-specific iPSCs, and as platforms for gene editing to control for age and ethnicity.


Cancer-associated splicing variants of the CDCA1 and MSMB genes expressed in cancer cell lines and surgically resected gastric cancer tissues.

  • Shinobu Ohnuma‎ et al.
  • Surgery‎
  • 2009‎

Alternative splicing is a molecular mechanism by which different combinations of exons can be alternatively spliced to produce different mRNA isoforms. Recently, several databases have been published to predict the alternative splicing of mRNA; cancer-specific alternative splicing has also been predicted with these databases. Those variants may be potentially useful targets for cancer therapy, however, the accuracy and veracity of these databases have yet to be confirmed.


AMPK activation reverts mouse epiblast stem cells to naive state.

  • Yajing Liu‎ et al.
  • iScience‎
  • 2021‎

Despite increasing knowledge on primed and naive pluripotency, the cell signaling that regulates the pluripotency type in stem cells remains not fully understood. Here we show that AMP kinase (AMPK) activators can induce the reversion of primed mouse epiblast stem cells (mEpiSCs) to the naive pluripotent state. The addition of AMPK activators alone or together with leukemia inhibitory factor to primed mEpiSCs induced the appearance of naive-like cells. After passaging in naive culture conditions, the colony morphology, protein expression, and global gene expression profiles indicated the naive state, as did germline transmission ability. Loss-of-function and gain-of-function studies suggested that p38 is a critical downstream target in AMPK activation. Finally, single-cell RNA sequencing analysis revealed that the reversion process through AMPK signaling passes an intermediate naive-like population. In conclusion, the AMPK pathway is a critical driving force in the reversion of primed to naive pluripotency.


Human iPS cell-derived cartilaginous tissue spatially and functionally replaces nucleus pulposus.

  • Takashi Kamatani‎ et al.
  • Biomaterials‎
  • 2022‎

The loss of nucleus pulposus (NP) precedes the intervertebral disk (IVD) degeneration that causes back pain. Here, we demonstrate that the implantation of human iPS cell-derived cartilaginous tissue (hiPS-Cart) restores this loss by replacing lost NP spatially and functionally. NP cells consist of notochordal NP cells and chondrocyte-like NP cells. Single cell RNA sequencing (scRNA-seq) analysis revealed that cells in hiPS-Cart corresponded to chondrocyte-like NP cells but not to notochordal NP cells. The implantation of hiPS-Cart into a nuclectomized space of IVD in nude rats prevented the degeneration of the IVD and preserved its mechanical properties. hiPS-Cart survived and occupied the nuclectomized space for at least six months after implantation, indicating spatial and functional replacement of lost NP by hiPS-Cart. Further scRNA-seq analysis revealed that hiPS-Cart cells changed their profile after implantation, differentiating into two lineages that are metabolically distinct from each other. However, post-implanted hiPS-Cart cells corresponded to chondrocyte-like NP cells only and did not develop into notochordal NP cells, suggesting that chondrocyte-like NP cells are nearly sufficient for NP function. The data collectively indicate that hiPS-Cart is a candidate implant for regenerating NP spatially and functionally and preventing IVD degeneration.


iGEM as a human iPS cell-based global epigenetic modulation detection assay provides throughput characterization of chemicals affecting DNA methylation.

  • Satoshi Otsuka‎ et al.
  • Scientific reports‎
  • 2023‎

Chemical-induced dysregulation of DNA methylation during the fetal period is known to contribute to developmental disorders or increase the risk of certain diseases later in life. In this study, we developed an iGEM (iPS cell-based global epigenetic modulation) detection assay using human induced pluripotent stem (hiPS) cells that express a fluorescently labeled methyl-CpG-binding domain (MBD), which enables a high-throughput screening of epigenetic teratogens/mutagens. 135 chemicals with known cardiotoxicity and carcinogenicity were categorized according to the MBD signal intensity, which reflects the degree of nuclear spatial distribution/concentration of DNA methylation. Further biological characterization through machine-learning analysis that integrated genome-wide DNA methylation, gene expression profiling, and knowledge-based pathway analysis revealed that chemicals with hyperactive MBD signals strongly associated their effects on DNA methylation and expression of genes involved in cell cycle and development. These results demonstrated that our MBD-based integrated analytical system is a powerful framework for detecting epigenetic compounds and providing mechanism insights of pharmaceutical development for sustainable human health.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: