Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Sodium-glucose cotransporter 2 inhibition attenuates protein overload in renal proximal tubule via suppression of megalin O-GlcNacylation in progressive diabetic nephropathy.

  • Hitomi Otomo‎ et al.
  • Metabolism: clinical and experimental‎
  • 2020‎

The crosstalk between sodium-glucose cotransporter 2 (SGLT2) inhibition and a membrane-associated endocytic receptor megalin function involved in renal proximal tubular protein overload in progressive diabetic nephropathy (DN) is uncertain. Here, we determined whether SGLT2 inhibition affects megalin endocytic function through suppressing its O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) and protects the diabetic kidney from protein overload.


GLP-1 Receptor Signaling Differentially Modifies the Outcomes of Sterile vs Viral Pulmonary Inflammation in Male Mice.

  • Takehiro Sato‎ et al.
  • Endocrinology‎
  • 2020‎

A number of disease states, including type 2 diabetes (T2D), are associated with an increased risk of pulmonary infection. Glucagon-like peptide-1 (GLP-1) receptor agonists are used to treat T2D and exert anti-inflammatory actions through a single, well-defined GLP-1 receptor (GLP-1R). Although highly expressed in the lung, little is known about the role of the GLP-1R in the context of pulmonary inflammation. Here we examined the consequences of gain or loss of GLP-1R activity in infectious and noninfectious lung inflammation. We studied wild-type mice treated with a GLP-1R agonist, and Glp1r-/- mice, in the setting of bleomycin-induced noninfectious lung injury and influenza virus infection. Loss of the GLP-1R attenuated the severity of bleomycin-induced lung injury, whereas activation of GLP-1R signaling increased pulmonary inflammation via the sympathetic nervous system. In contrast, GLP-1R agonism reduced the pathogen load in mice with experimental influenza virus infection in association with increased expression of intracellular interferon-inducible GTPases. Notably, the GLP-1 receptor agonist liraglutide improved the survival rate after influenza virus infection. Our results reveal context-dependent roles for the GLP-1 system in the response to lung injury. Notably, the therapeutic response of GLP-1R agonism in the setting of experimental influenza virus infection may have relevance for ongoing studies of GLP-1R agonism in people with T2D susceptible to viral lung injury.


Reduction of Superoxide Dismutase 1 Delays Regeneration of Cardiotoxin-Injured Skeletal Muscle in KK/Ta-Ins2Akita Mice with Progressive Diabetic Nephropathy.

  • Yuya Takahashi‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Superoxide dismutase (SOD) is a major antioxidant enzyme for superoxide removal, and cytoplasmic SOD (SOD1) is expressed as a predominant isoform in all cells. We previously reported that renal SOD1 deficiency accelerates the progression of diabetic nephropathy (DN) via increasing renal oxidative stress. To evaluate whether the degree of SOD1 expression determines regeneration capacity and sarcopenic phenotypes of skeletal muscles under incipient and advanced DN conditions, we investigated the alterations of SOD1 expression, oxidative stress marker, inflammation, fibrosis, and regeneration capacity in cardiotoxin (CTX)-injured tibialis anterior (TA) muscles of two Akita diabetic mouse models with different susceptibility to DN, DN-resistant C57BL/6-Ins2Akita and DN-prone KK/Ta-Ins2Akita mice. Here, we report that KK/Ta-Ins2Akita mice, but not C57BL/6-Ins2Akita mice, exhibit delayed muscle regeneration after CTX injection, as demonstrated by the finding indicating significantly smaller average cross-sectional areas of regenerating TA muscle myofibers relative to KK/Ta-wild-type mice. Furthermore, we observed markedly reduced SOD1 expression in CTX-injected TA muscles of KK/Ta-Ins2Akita mice, but not C57BL/6-Ins2Akita mice, along with increased inflammatory cell infiltration, prominent fibrosis and superoxide overproduction. Our study provides the first evidence that SOD1 reduction and the following superoxide overproduction delay skeletal muscle regeneration through induction of overt inflammation and fibrosis in a mouse model of progressive DN.


Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy.

  • Satoru Takashima‎ et al.
  • Kidney international‎
  • 2016‎

The role of stromal cell-derived factor-1 (SDF-1) in the pathogenesis of diabetic nephropathy and its modification by dipeptidyl peptidase-4 (DPP-4) inhibition are uncertain. Therefore, we studied this independent of glucagon-like peptide-1 receptor (GLP-1R) signaling using two Akita diabetic mouse models, the diabetic-resistant C57BL/6-Akita and diabetic-prone KK/Ta-Akita. Increased SDF-1 expression was found in glomerular podocytes and distal nephrons in the diabetic-prone mice, but not in kidneys from diabetic-resistant mice. The DPP-4 inhibitor linagliptin, but not the GLP-1R agonist liraglutide, further augmented renal SDF-1 expression in both Glp1r(+/+) and Glp1r(-/-) diabetic-prone mice. Along with upregulation of renal SDF-1 expression, the progression of albuminuria, glomerulosclerosis, periglomerular fibrosis, podocyte loss, and renal oxidative stress was suppressed in linagliptin-treated Glp1r(+/+) diabetic-prone mice. Linagliptin treatment increased urinary sodium excretion and attenuated the increase in glomerular filtration rate which reflects glomerular hypertension and hyperfiltration. In contrast, selective SDF-1 receptor blockade with AMD3100 reduced urinary sodium excretion and aggravated glomerular hypertension in the Glp1r(+/+) diabetic-prone mice. Thus, DPP-4 inhibition, independent of GLP-1R signaling, contributes to protection of the diabetic kidney through SDF-1-dependent antioxidative and antifibrotic effects and amelioration of adverse renal hemodynamics.


Food Intake Affects Sperm-Egg Fusion Through the GIP/PSG17 Axis in Mice.

  • Tatsunori Shimizu‎ et al.
  • Endocrinology‎
  • 2017‎

In addition to overeating, starvation also reduces fecundity in mammals. However, little is known about the molecular mechanisms linking food intake to fertility, especially in males. Gastric inhibitory polypeptide (GIP), which is released from intestinal K-cells after meal ingestion, stimulates insulin secretion from pancreatic β-cells through the action of incretin and has several extrapancreatic effects. Here, we identified GIP receptor (Gipr) expression in mouse spermatids. Microarray analysis revealed that pregnancy-specific glycoprotein 17 (Psg17), a potential CD9-binding partner, was significantly decreased in GIP receptor-knockout (Gipr-/-) testes. Glycosylphosphatidylinositol-anchored PSG17 was expressed on the surface of acrosome-reacted sperm, and Gipr-/- sperm led to a lower fertilization rate in vitro, compared with that of Gipr+/+ sperm, both in the absence and presence of the zona pellucida. Plasma GIP concentrations and Psg17 messenger RNA (mRNA) were immediately increased in the testis after a single meal, whereas ingestion of a chronic high-fat diet markedly decreased Gipr and Psg17 mRNA. These results suggest that reduced GIP signaling, by decreased GIP levels or the downregulation of Gipr, is associated with the reduction of fecundity due to starvation or overeating. Thus, proper regulation of GIP signaling in the testis could be a potential unique therapeutic target for male infertility in obese and diabetic individuals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: