Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Developmental social environment imprints female preference for male song in mice.

  • Akari Asaba‎ et al.
  • PloS one‎
  • 2014‎

Sexual imprinting is important for kin recognition and for promoting outbreeding, and has been a driving force for evolution; however, little is known about sexual imprinting by auditory cues in mammals. Male mice emit song-like ultrasonic vocalizations that possess strain-specific characteristics.


Production of Sry knockout mouse using TALEN via oocyte injection.

  • Tomoko Kato‎ et al.
  • Scientific reports‎
  • 2013‎

Recently developed transcription activator-like effector nuclease (TALEN) technology has enabled the creation of knockout mice, even for genes on the Y chromosome. In this study, we generated a knockout mouse for Sry, a sex-determining gene on the Y chromosome, using microinjection of TALEN RNA into pronuclear stage oocytes. As expected, the knockout mouse had female external and internal genitalia, a female level of blood testosterone and a female sexually dimorphic nucleus in the brain. The knockout mouse exhibited an estrous cycle and performed copulatory behavior as females, although it was infertile or had reduced fertility. A histological analysis showed that the ovary of the knockout mouse displayed a reduced number of oocytes and luteinized unruptured follicles, implying that a reduced number of ovulated oocytes is a possible reason for infertility and/or reduced fertility in the KO mouse.


Nrp2 is sufficient to instruct circuit formation of mitral-cells to mediate odour-induced attractive social responses.

  • Kasumi Inokuchi‎ et al.
  • Nature communications‎
  • 2017‎

Odour information induces various innate responses that are critical to the survival of the individual and for the species. An axon guidance molecule, Neuropilin 2 (Nrp2), is known to mediate targeting of olfactory sensory neurons (primary neurons), to the posteroventral main olfactory bulb (PV MOB) in mice. Here we report that Nrp2-positive (Nrp2+) mitral cells (MCs, second-order neurons) play crucial roles in transmitting attractive social signals from the PV MOB to the anterior part of medial amygdala (MeA). Semaphorin 3F, a repulsive ligand to Nrp2, regulates both migration of Nrp2+ MCs to the PV MOB and their axonal projection to the anterior MeA. In the MC-specific Nrp2 knockout mice, circuit formation of Nrp2+ MCs and odour-induced attractive social responses are impaired. In utero, electroporation demonstrates that activation of the Nrp2 gene in MCs is sufficient to instruct their circuit formation from the PV MOB to the anterior MeA.


Testosterone Increases the Emission of Ultrasonic Vocalizations With Different Acoustic Characteristics in Mice.

  • Takefumi Kikusui‎ et al.
  • Frontiers in psychology‎
  • 2021‎

Testosterone masculinizes male sexual behavior through an organizational and activational effects. We previously reported that the emission of ultrasonic vocalizations (USVs) in male mice was dependent on the organizational effects of testosterone; females treated with testosterone in the perinatal and peripubertal periods, but not in adults, had increased USV emissions compared to males. Recently, it was revealed that male USVs have various acoustic characteristics and these variations were related to behavioral interactions with other mice. In this regard, the detailed acoustic characteristic changes induced by testosterone have not been fully elucidated. Here, we revealed that testosterone administered to female and male mice modulated the acoustic characteristics of USVs. There was no clear difference in acoustic characteristics between males and females. Call frequencies were higher in testosterone propionate (TP)-treated males and females compared to control males and females. When the calls were classified into nine types, there was also no distinctive difference between males and females, but TP increased the number of calls with a high frequency, and decreased the number of calls with a low frequency and short duration. The transition analysis by call type revealed that even though there was no statistically significant difference, TP-treated males and females had a similar pattern of transition to control males and females, respectively. Collectively, these results suggest that testosterone treatment can enhance the emission of USVs both in male and female, but the acoustic characteristics of TP-treated females were not the same as those of intact males.


Microbial colonization history modulates anxiety-like and complex social behavior in mice.

  • Itsuka Kamimura‎ et al.
  • Neuroscience research‎
  • 2021‎

Microbiome composition has a pivotal role in neurobehavioral development. However, there is limited information about the role of the microbiome in sociability of mice in complex social contexts. Germ-free (GF) mice were reared in a microbiota-free environment until postnatal day 21 and then transferred to a room containing specific pathogen free (SPF) mice. At 9 weeks old, group social behaviors were measured for three GF mice and three SPF mice unfamiliar to each other. GF mice spent less time in the center area of the arena and there were longer inter-individual distances compared with SPF mice. GF mice also had decreased brain-derived neurotrophic factor (BDNF) and increased ΔFosB mRNA in the prefrontal cortex compared to SPF mice. There were differences in the gut microbiome composition between GF and SPF mice; however, if cohabitating after weaning, then their microbiome composition became equivalent and group differences in behavior and BDNF and ΔFosB mRNA expression disappeared. These results demonstrate that the bacterial community can modulate neural systems that are involved in sociability and anxiety during the developmental period and suggest that sociability and anxiety can be shaped depending on the microbiome environment through interaction with conspecifics.


Early weaning augments the spontaneous release of dopamine in the amygdala but not the prefrontal cortex: an in vivo microdialysis study of male rats.

  • Masatoshi Takita‎ et al.
  • Experimental animals‎
  • 2020‎

Our early weaning schedule was associated with the emergence of trait anxiety in male rodents performing an elevated plus maze but not an open-field test. We previously reported that early weaning weakened excitatory neurotransmission to the amygdala from the prefrontal cortex, where the mesocorticolimbic dopaminergic (DAergic) fiber terminates on each. In this study, we investigated DAergic transmission in both these brain regions. The extracellular levels of amygdalar DA in adulthood were two times higher in rats weaned at 16 days compared to those weaned at 30 days in both the home cage and the open-field. This difference in extracellular DA levels was not apparent in the prefrontal cortex. The concurrently measured locomotor and rearing behaviors did not vary according to the weaning period and the probe-implanted region, respectively. These results suggest that the effects of early weaning on DA tone appear to be specific to the amygdala and do not represent ubiquitous upregulation as these changes were not observed in the prefrontal cortex.


Humanized substitutions of Vmat1 in mice alter amygdala-dependent behaviors associated with the evolution of anxiety.

  • Daiki X Sato‎ et al.
  • iScience‎
  • 2022‎

The human vesicular monoamine transporter 1 (VMAT1) harbors unique substitutions (Asn136Thr/Ile) that affect monoamine uptake into synaptic vesicles. These substitutions are absent in all known mammals, suggesting their contributions to distinct aspects of human behavior modulated by monoaminergic transmissions, such as emotion and cognition. To directly test the impact of these human-specific mutations, we introduced the humanized residues into mouse Vmat1 via CRISPR/Cas9-mediated genome editing and examined changes at the behavioral, neurophysiological, and molecular levels. Behavioral tests revealed reduced anxiety-related traits of Vmat1 Ile mice, consistent with human studies, and electrophysiological recordings showed altered oscillatory activity in the amygdala under anxiogenic conditions. Transcriptome analyses further identified changes in gene expressions in the amygdala involved in neurodevelopment and emotional regulation, which may corroborate the observed phenotypes. This knock-in mouse model hence provides compelling evidence that the mutations affecting monoaminergic signaling and amygdala circuits have contributed to the evolution of human socio-emotional behaviors.


Intestinal microbiome and maternal mental health: preventing parental stress and enhancing resilience in mothers.

  • Michiko Matsunaga‎ et al.
  • Communications biology‎
  • 2024‎

The number of mothers suffering from mental illness is increasing steadily, particularly under conditions of the coronavirus pandemic. The identification of factors that contribute to resilience in mothers is urgently needed to decrease the risks of poor physical and psychological health. We focused on the risk of parenting stress and psychological resilience in healthy mothers with no psychiatric and physical disorders and conducted two studies to examine the relationships between intestinal microbiota, physical condition, and psychological state. Our results showed that alpha diversity and beta diversity of the microbiome are related to high parenting stress risk. Psychological resilience and physical conditions were associated with relative abundances of the genera Blautia, Clostridium, and Eggerthella. This study helps further understand the gut-brain axis mechanisms and supports proposals for enhancing resilience in mothers.


Intergenerational transmission of maternal behavioral traits in mice: involvement of the gut microbiota.

  • Kazutaka Mogi‎ et al.
  • Frontiers in neuroscience‎
  • 2023‎

The matrilineal transmission of maternal behavior has been reported in several species. Studies, primarily on rats, have suggested the importance of postnatal experience and the involvement of epigenetic mechanisms in mediating these transmissions. This study aims to determine whether the matrilineal transmission of maternal behavior occurs in mice and whether the microbiota is involved. We first observed that early weaned (EW) female mice showed lower levels of maternal behavior, particularly licking/grooming (LG) of their own pups, than normally weaned (NW) female mice. This difference in maternal behavioral traits was also observed in the second generation, even though all mice were weaned normally. In the subsequent cross-fostering experiment, the levels of LG were influenced by the nurturing mother but not the biological mother. Finally, we transplanted the fecal microbiota from EW or NW mice into germ-free (GF) mice raising pups. The maternal behaviors that the pups exhibited toward their own offspring after growth were analyzed, and the levels of LG in GF mice colonized with microbiota from EW mice were lower than those in GF mice colonized with microbiota from NW mice. These results clearly indicate that, among maternal behavioral traits, LG is intergenerationally transmitted in mice and suggest that the vertical transmission of microbiota is involved in this process. This study demonstrates the universality of the intergenerational transmission of maternal behavioral traits and provides new insights into the role of microbiota.


Transport Response is a filial-specific behavioral response to maternal carrying in C57BL/6 mice.

  • Sachine Yoshida‎ et al.
  • Frontiers in zoology‎
  • 2013‎

A mother carries her young in many altricial mammals, such as cats, lions, rats and mice. During maternal carrying, the transported young assume a compact posture. We have recently shown that, in both humans and mice, the carried infants immediately calmed down and showed reductions in heart rate, distress vocalizations, and voluntary movement. The loss of the calming response in mouse pups hindered maternal retrieval efficacy. These findings suggested that the infant calming response functioned to reduce the maternal burden of carrying and was therefore conserved in a variety of mammalian species. However, it remains unclear how and when each component of this calming response develops and whether it is a filial-specific behavior.


Gonadal steroid hormone secretion during the juvenile period depends on host-specific microbiota and contributes to the development of odor preference.

  • Itsuka Kamimura‎ et al.
  • Developmental psychobiology‎
  • 2019‎

The host microbial community is thought to have an important role in the host endocrine system and behavioral phenotype. We investigated chronological changes of levels of gonadal hormones and corticosterone in the feces of 4- to 8-week-old female germ-free (GF) mice, and conducted odor preference test at 8 weeks of age. We further evaluated the developmental impact of the microbial community by analyzing 4-week-old GF mice orally administered the fecal microbiota of specific pathogen-free (SPF) mice or guinea pigs (GF-SPF mice or GF-Guinea pig mice). The fecal estradiol, progesterone, and corticosterone levels of GF mice were lower than those of SPF mice. Furthermore, the increased levels in GF mice were suggested to be caused by colonization of microbiota of SPF mice or guinea pigs. However, the degree of recovery of progesterone and corticosterone by microbiota of guinea pigs was lower than that by SPF mice. In odor preference tests, interestingly, female GF mice preferred female odors to male odors, although this preference was not seen in other mice. These findings suggested that the microbial community plays an important role in the development of the host endocrine system for gonadal hormones and corticosterone, and odor preference in mice.


Oxytocin neurons enable social transmission of maternal behaviour.

  • Ioana Carcea‎ et al.
  • Nature‎
  • 2021‎

Maternal care, including by non-biological parents, is important for offspring survival1-8. Oxytocin1,2,9-15, which is released by the hypothalamic paraventricular nucleus (PVN), is a critical maternal hormone. In mice, oxytocin enables neuroplasticity in the auditory cortex for maternal recognition of pup distress15. However, it is unclear how initial parental experience promotes hypothalamic signalling and cortical plasticity for reliable maternal care. Here we continuously monitored the behaviour of female virgin mice co-housed with an experienced mother and litter. This documentary approach was synchronized with neural recordings from the virgin PVN, including oxytocin neurons. These cells were activated as virgins were enlisted in maternal care by experienced mothers, who shepherded virgins into the nest and demonstrated pup retrieval. Virgins visually observed maternal retrieval, which activated PVN oxytocin neurons and promoted alloparenting. Thus rodents can acquire maternal behaviour by social transmission, providing a mechanism for adapting the brains of adult caregivers to infant needs via endogenous oxytocin.


Characterization of brown adipose tissue thermogenesis in the naked mole-rat (Heterocephalus glaber), a heterothermic mammal.

  • Yuki Oiwa‎ et al.
  • Scientific reports‎
  • 2020‎

The naked mole-rat (NMR) is a heterothermic mammal that forms eusocial colonies consisting of one reproductive female (queen), several reproductive males, and subordinates. Despite their heterothermy, NMRs possess brown adipose tissue (BAT), which generally induces thermogenesis in cold and some non-cold environments. Previous studies suggest that NMR-BAT induces thermogenesis by cold exposure. However, detailed NMR-BAT characteristics and whether NMR-BAT thermogenesis occurs in non-cold environments are unknown. Here, we show beta-3 adrenergic receptor (ADRB3)-dependent thermogenic potential of NMR-BAT, which contributes to thermogenesis in the isolated queen in non-cold environments (30 °C). NMR-BAT expressed several brown adipocyte marker genes and showed noradrenaline-dependent thermogenic activity in vitro and in vivo. Although our ADRB3 inhibition experiments revealed that NMR-BAT thermogenesis slightly delays the decrease in body temperature in a cold environment (20 °C), it was insufficient to prevent the decrease in the body temperatures. Even at 30 °C, NMRs are known to prevent the decrease of and maintain their body temperature by heat-sharing behaviors within the colony. However, isolated NMRs maintained their body temperature at the same level as when they are in the colony. Interestingly, we found that queens, but not subordinates, induce BAT thermogenesis in this condition. Our research provides novel insights into NMR thermoregulation.


Prelimbic cortex responds to male ultrasonic vocalizations in the presence of a male pheromone in female mice.

  • Akari Asaba‎ et al.
  • Frontiers in neural circuits‎
  • 2022‎

Sensory signals are critical to perform adaptive social behavior. During copulation, male mice emit ultrasonic vocalizations (USVs). Our previous studies have shown that female mice exhibit approach behavior toward sound sources of male USVs and that, after being exposed to a male pheromone, exocrine gland-secreting peptide 1 (ESP1), female mice exhibited a preference toward a particular type of male USVs. These findings suggest that male USVs modulate female courtship behavior. However, it remains unclear which brain regions and what cell types of neurons are involved in neuronal processing of male USVs. To clarify this issue, immediate early gene analysis, behavioral analysis, and neurochemical analysis were performed. The in situ hybridization analysis of c-fos mRNA in multiple brain regions showed that neurons in the prelimbic cortex were responsive to presentation of male USVs in the presence of ESP1. Furthermore, this study found that activity of prelimbic cortex was correlated with the duration of female exploration behavior toward a sound source of the USVs. Finally, by using double immunohistochemistry, the present study showed that the prelimbic neurons responding to the presentation of male USVs were presumably excitatory glutamatergic neurons. These results suggest that the prelimbic cortex may facilitate female courtship behavior in response to male USVs.


The olfactory critical period is determined by activity-dependent Sema7A/PlxnC1 signaling within glomeruli.

  • Nobuko Inoue‎ et al.
  • eLife‎
  • 2021‎

In mice, early exposure to environmental odors affects social behaviors later in life. A signaling molecule, Semaphorin 7A (Sema7A), is induced in the odor-responding olfactory sensory neurons. Plexin C1 (PlxnC1), a receptor for Sema7A, is expressed in mitral/tufted cells, whose dendrite-localization is restricted to the first week after birth. Sema7A/PlxnC1 signaling promotes post-synaptic events and dendrite selection in mitral/tufted cells, resulting in glomerular enlargement that causes an increase in sensitivity to the experienced odor. Neonatal odor experience also induces positive responses to the imprinted odor. Knockout and rescue experiments indicate that oxytocin in neonates is responsible for imposing positive quality on imprinted memory. In the oxytocin knockout mice, the sensitivity to the imprinted odor increases, but positive responses cannot be promoted, indicating that Sema7A/PlxnC1 signaling and oxytocin separately function. These results give new insights into our understanding of olfactory imprinting during the neonatal critical period.


A role for strain differences in waveforms of ultrasonic vocalizations during male-female interaction.

  • Hiroki Sugimoto‎ et al.
  • PloS one‎
  • 2011‎

Male mice emit ultrasonic vocalizations (USVs) towards females during male-female interaction. It has been reported that USVs of adult male mice have the capability of attracting females. Although the waveform pattern of USVs is affected by genetic background, differences among strains with respect to USV and the effects of these differences on courtship behavior have not been analyzed fully. We analyzed USV patterns, as well as actual social behavior during USV recording, in 13 inbred mouse strains, which included laboratory and wild-derived strains. Significant effects of strain were observed for the frequency of USV emission, duration, and frequency of the waveform category. Principal component (PC) analysis showed that PC1 was related to frequency and duration, and PC2-4 were related to each waveform. In the comparison of USV patterns and behaviors among strains, wild-derived KJR mice displayed the highest scores for PC2-4, and female mice paired with KJR males did not emit rejection-related click sounds. It is assumed that the waveforms emitted by KJR males have a positive effect in male-female interaction. Therefore, we extracted waveforms in PC2-4 from the USV recordings of KJR mice to produce a sound file, "HIGH2-4". As a negative control, another sound file ("LOW2-4") was created by extracting waveforms in PC2-4 from strains with low scores for these components. In the playback experiments using these sound files, female mice were attracted to the speaker that played HIGH2-4 but not the speaker that played LOW2-4. These results highlight the role of strain differences in the waveforms of male USVs during male-female interaction. The results indicated that female mice use male USVs as information when selecting a suitable mate.


Immobility responses are induced by photoactivation of single glomerular species responsive to fox odour TMT.

  • Harumi Saito‎ et al.
  • Nature communications‎
  • 2017‎

Fox odour 2,4,5-trimethyl thiazoline (TMT) is known to activate multiple glomeruli in the mouse olfactory bulb (OB) and elicits strong fear responses. In this study, we screened TMT-reactive odourant receptors and identified Olfr1019 with high ligand reactivity and selectivity, whose glomeruli are located in the posterodorsal OB. In the channelrhodopsin knock-in mice for Olfr1019, TMT-responsive olfactory-cortical regions were activated by photostimulation, leading to the induction of immobility, but not aversive behaviour. Distribution of photoactivation signals was overlapped with that of TMT-induced signals, but restricted to the narrower regions. In the knockout mice, immobility responses were reduced, but not entirely abolished likely due to the compensatory function of other TMT-responsive glomeruli. Our results demonstrate that the activation of a single glomerular species in the posterodorsal OB is sufficient to elicit immobility responses and that TMT-induced fear may be separated into at least two different components of immobility and aversion.


Exocrine Gland-Secreting Peptide 1 Is a Key Chemosensory Signal Responsible for the Bruce Effect in Mice.

  • Tatsuya Hattori‎ et al.
  • Current biology : CB‎
  • 2017‎

The Bruce effect refers to pregnancy termination in recently pregnant female rodents upon exposure to unfamiliar males [1]. This event occurs in specific combinations of laboratory mouse strains via the vomeronasal system [2, 3]; however, the responsible chemosensory signals have not been fully identified. Here we demonstrate that the male pheromone exocrine gland-secreting peptide 1 (ESP1) is one of the key factors that causes pregnancy block. Female mice exhibited high pregnancy failure rates upon encountering males that secreted different levels of ESP1 compared to the mated male. The effect was not observed in mice that lacked the ESP1 receptor, V2Rp5, which is expressed in vomeronasal sensory neurons. Prolactin surges in the blood after mating, which are essential for maintaining luteal function, were suppressed by ESP1 exposure, suggesting that a neuroendocrine mechanism underlies ESP1-mediated pregnancy failure. The single peptide pheromone ESP1 conveys not only maleness to promote female receptivity but also the males' characteristics to facilitate memorization of the mating partner.


IL1RAPL1 knockout mice show spine density decrease, learning deficiency, hyperactivity and reduced anxiety-like behaviours.

  • Misato Yasumura‎ et al.
  • Scientific reports‎
  • 2014‎

IL-1 receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic intellectual disability and is associated with autism. IL1RAPL1 mediates excitatory synapse formation through trans-synaptic interaction with PTPδ. Here, we showed that the spine density of cortical neurons was significantly reduced in IL1RAPL1 knockout mice. The spatial reference and working memories and remote fear memory were mildly impaired in IL1RAPL1 knockout mice. Furthermore, the behavioural flexibility was slightly reduced in the T-maze test. Interestingly, the performance of IL1RAPL1 knockout mice in the rotarod test was significantly better than that of wild-type mice. Moreover, IL1RAPL1 knockout mice consistently exhibited high locomotor activity in all the tasks examined. In addition, open-space and height anxiety-like behaviours were decreased in IL1RAPL1 knockout mice. These results suggest that IL1RAPL1 ablation resulted in spine density decrease and affected not only learning but also behavioural flexibility, locomotor activity and anxiety.


Intranasal Oxytocin Treatment Increases Eye-Gaze Behavior toward the Owner in Ancient Japanese Dog Breeds.

  • Miho Nagasawa‎ et al.
  • Frontiers in psychology‎
  • 2017‎

Dogs acquired unique cognitive abilities during domestication, which is thought to have contributed to the formation of the human-dog bond. In European breeds, but not in wolves, a dog's gazing behavior plays an important role in affiliative interactions with humans and stimulates oxytocin secretion in both humans and dogs, which suggests that this interspecies oxytocin and gaze-mediated bonding was also acquired during domestication. In this study, we investigated whether Japanese breeds, which are classified as ancient breeds and are relatively close to wolves genetically, establish a bond with their owners through gazing behavior. The subject dogs were treated with either oxytocin or saline before the starting of the behavioral testing. We also evaluated physiological changes in the owners during mutual gazing by analyzing their heart rate variability (HRV) and subsequent urinary oxytocin levels in both dogs and their owners. We found that oxytocin treatment enhanced the gazing behavior of Japanese dogs and increased their owners' urinary oxytocin levels, as was seen with European breeds; however, the measured durations of skin contact and proximity to their owners were relatively low. In the owners' HRV readings, inter-beat (R-R) intervals (RRI), the standard deviation of normal to normal inter-beat (R-R) intervals (SDNN), and the root mean square of successive heartbeat interval differences (RMSSD) were lower when the dogs were treated with oxytocin compared with saline. Furthermore, the owners of female dogs showed lower SDNN than the owners of male dogs. These results suggest that the owners of female Japanese dogs exhibit more tension during interactions, and apart from gazing behavior, the dogs may show sex differences in their interactions with humans as well. They also suggest that Japanese dogs use eye-gazing as an attachment behavior toward humans similar to European breeds; however, there is a disparity between the dog sexes when it comes to the owners' oxytocin secretion. Japanese dogs also showed different attachment behaviors from both European breeds and wolves, and they likely use additional strategies to substitute gaze when forming the human-dog bond.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: