Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Effects of Roxadustat on Erythropoietin Production in the Rat Body.

  • Yukiko Yasuoka‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Anemia is a major complication of chronic renal failure. To treat this anemia, prolylhydroxylase domain enzyme (PHD) inhibitors as well as erythropoiesis-stimulating agents (ESAs) have been used. Although PHD inhibitors rapidly stimulate erythropoietin (Epo) production, the precise sites of Epo production following the administration of these drugs have not been identified. We developed a novel method for the detection of the Epo protein that employs deglycosylation-coupled Western blotting. With protein deglycosylation, tissue Epo contents can be quantified over an extremely wide range. Using this method, we examined the effects of the PHD inhibitor, Roxadustat (ROX), and severe hypoxia on Epo production in various tissues in rats. We observed that ROX increased Epo mRNA expression in both the kidneys and liver. However, Epo protein was detected in the kidneys but not in the liver. Epo protein was also detected in the salivary glands, spleen, epididymis and ovaries. However, both PHD inhibitors (ROX) and severe hypoxia increased the Epo protein abundance only in the kidneys. These data show that, while Epo is produced in many tissues, PHD inhibitors as well as severe hypoxia regulate Epo production only in the kidneys.


Novel breast cancer screening: combined expression of miR-21 and MMP-1 in urinary exosomes detects 95% of breast cancer without metastasis.

  • Wataru Ando‎ et al.
  • Scientific reports‎
  • 2019‎

Serum and tissue miR-21 expression in patients with breast cancer (BC) is a useful biomarker for cancer diagnosis, progression, and treatment. Matrix metalloproteinase-1 (MMP-1) is also important in breast cancer carcinogenesis. However, miR-21 and MMP-1/CD63 in urine exosomes in these patients have not been examined. Urine samples were collected from patients with BC and 26 healthy females. Urinary exosomes were isolated and confirmed by western blotting with anti-CD63 antibody and electron microscopy observation. MiR-21 and MMP-1/CD63 expression was examined by quantitative RT-PCR and western blotting, respectively. Patients with very early stage breast cancer were evaluated. MiR-21 expression in the patients was 0.26 [95% CI: 0.20-0.78], which was significant lower than in the 26 controls (1.00 [95% CI: 1.01-3.37], p = 0.0947). MMP-1/CD63 expression in patients was significantly higher than in controls (1.74 [95% CI: 0.86-5.08] vs 0.535 [95% CI: -0.01-2.81], p = 0.0001). Sensitivity and specificity were 0.708 and 0.783 for miR-21 and 0.792 and 0.840 for MMP-1/CD63, respectively. Sensitivity and specificity of combined expression were 95% and 79%, respectively. The sensitivity of MMP-1/CD63 expression in urinary exosomes was better than that of miR-21 expression. Thus, miR-21 and MMP/CD63 may be useful markers for BC screening.


Mint3/Apba3 depletion ameliorates severe murine influenza pneumonia and macrophage cytokine production in response to the influenza virus.

  • Takayuki Uematsu‎ et al.
  • Scientific reports‎
  • 2016‎

Influenza virus (IFV) infection is a common cause of severe pneumonia. Studies have suggested that excessive activation of the host immune system including macrophages is responsible for the severe pathologies mediated by IFV infection. Here, we focused on the X11 protein family member Mint3/Apba3, known to promote ATP production via glycolysis by activating hypoxia inducible factor-1 (HIF-1) in macrophages, and examined its roles in lung pathogenesis and anti-viral defence upon IFV infection. Mint3-deficient mice exhibited improved influenza pneumonia with reduced inflammatory cytokines/chemokine levels and neutrophil infiltration in the IFV-infected lungs without alteration in viral burden, type-I interferon production, or acquired immunity. In macrophages, Mint3 depletion attenuated NF-κB signalling and the resultant cytokine/chemokine production in response to IFV infection by increasing IκBα and activating the cellular energy sensor AMPK, respectively. Thus, Mint3 might represent one of the likely therapeutic targets for the treatment of severe influenza pneumonia without affecting host anti-viral defence through suppressing macrophage cytokine/chemokine production.


Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase.

  • Taiga Yamazaki‎ et al.
  • PloS one‎
  • 2017‎

To study the impact of epigenetic changes on biological functions, the ability to manipulate the epigenetic status of certain genomic regions artificially could be an indispensable technology. "Epigenome editing" techniques have gradually emerged that apply TALE or CRISPR/Cas9 technologies with various effector domains isolated from epigenetic code writers or erasers such as DNA methyltransferase, 5-methylcytosine oxidase, and histone modification enzymes. Here we demonstrate that a TALE recognizing a major satellite, consisting of a repeated sequence in pericentromeres, could be fused with the bacterial CpG methyltransferase, SssI. ChIP-qPCR assays demonstrated that the fusion protein TALMaj-SssI preferentially bound to major chromosomal satellites in cultured cell lines. Then, TALMaj-SssI was expressed in fertilized mouse oocytes with hypomethylated major satellites (10-20% CpG islands). Bisulfite sequencing revealed that the DNA methylation status was increased specifically in major satellites (50-60%), but not in minor satellites or other repeat elements, such as Intracisternal A-particle (IAP) or long interspersed nuclear elements-1 (Line1) when the expression level of TALMaj-SssI is optimized in the cell. At a microscopic level, distal ends of chromosomes at the first mitotic stage were dramatically highlighted by the mCherry-tagged methyl CpG binding domain of human MBD1 (mCherry-MBD-NLS). Moreover, targeted DNA methylation to major satellites did not interfere with kinetochore function during early embryonic cleavages. Co-injection of dCas9 fused with SssI and guide RNA (gRNA) recognizing major satellite sequences enabled increment of the DNA methylation in the satellites, but a few off-target effects were also observed in minor satellites and retrotransposons. Although CRISPR can be applied instead of the TALE system, technical improvements to reduce off-target effects are required. We have demonstrated a new method of introducing DNA methylation without the need of other binding partners using the CpG methyltransferase, SssI.


Effects of Angiotensin II on Erythropoietin Production in the Kidney and Liver.

  • Yukiko Yasuoka‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The kidney is a main site of erythropoietin production in the body. We developed a new method for the detection of Epo protein by deglycosylation-coupled Western blotting. Detection of deglycosylated Epo enables the examination of small changes in Epo production. Using this method, we investigated the effects of angiotensin II (ATII) on Epo production in the kidney. ATII stimulated the plasma Epo concentration; Epo, HIF2α, and PHD2 mRNA expression in nephron segments in the renal cortex and outer medulla; and Epo protein expression in the renal cortex. In situ hybridization and immunohistochemistry revealed that ATII stimulates Epo mRNA and protein expression not only in proximal tubules but also in collecting ducts, especially in intercalated cells. These data support the regulation of Epo production in the kidney by the renin-angiotensin-aldosterone system (RAS).


Oral administration of heat-killed Lactobacillus kunkeei YB38 improves murine influenza pneumonia by enhancing IgA production.

  • Takashi Asama‎ et al.
  • Bioscience of microbiota, food and health‎
  • 2017‎

Influenza is one of the important respiratory tract infections that require special attention for maintaining health and hygiene. The removal of influenza virus (IFV) by secretory IgA produced by the respiratory epithelium has been reported to be a critical host defense mechanism. Therefore, we isolated Lactobacillus kunkeei YB38 (YB38), the promoter of the salivary IgA secretion in humans, from honeybee pollen and studied the effect of heat-killed YB38 treatment for preventing IFV infection in a mouse model. Female BALB/c mice received YB38 orally for 21 consecutive days and were then inoculated nasally with IFV. The YB38-treated group with a daily dose of 100 mg/kg showed an increased survival rate after IFV infection relative to the control. IgA secretion in the respiratory epithelium in the YB38-treated group (100 mg/kg) was significantly increased after 6 days of infection, while IL-6 production in the same respiratory site and the number of cells infiltrating into alveoli were significantly decreased. Moreover, lung tissue damage that appeared after IFV infection was reduced. These results suggested that the YB38 dose induced early and local IgA secretion at the infection site, inhibited persistent IFV infection, and prevented the infiltration of inflammatory immune cells or production of excessive IL-6, resulting in less damage to lung tissues.


Differentiation of endogenous erythropoietin and exogenous ESAs by Western blotting.

  • Yukiko Yasuoka‎ et al.
  • Heliyon‎
  • 2020‎

Doping tests for the illegal use of erythropoiesis-stimulating agents (ESAs) have been developed. We developed a new Western blotting method to detect and distinguish endogenous erythropoietin (Epo, 35-38 kDa) and exogenous ESAs (epoetin α and β, 38-42 kDa; darbepoetin α, 47-50 kDa; epoetin β pegol, 93-110 kDa). Epo and ESAs are glycoproteins and deglycosylation using peptide-N-glycosidase F shifted all Epo and ESA bands except epoetin β pegol to 22 kDa. We cut the bands of Epo and ESAs from SDS-PAGE gels and analyzed them by Liquid Chromatography/Mass Spectrometry (LC/MS). LC/MS detected all endogenous Epo and exogenous ESAs as deglycosylated 22 kDa Epo, indicating that LC/MS analysis could confirm the presence of Epo or ESA, but could not distinguish between endogenous Epo and exogenous ESAs. We propose the following Epo doping tests: 1) detect Epo or ESAs by Western blotting of the glycosylated form; 2) increase the reliability by the band shift following deglycosylation; and 3) complete confirmation of Epo or ESA by LC/MS analysis using cut gels. One of the advantages of our method is that pre-purification of samples for Epo is not required in our Western blotting.


Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity.

  • Takayuki Uematsu‎ et al.
  • Scientific reports‎
  • 2015‎

Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune activation through multiple innate sensor proteins, and investigated its role in anti-IFV defense and lung pathogenesis in a mouse model recapitulating severe influenza pneumonia with ARDS. We found that influenza pneumonia was dramatically attenuated in Card9-deficient mice, which showed improved mortality with reduced inflammatory cytokines and chemokines in the infected lungs. However, viral clearance, type-I interferon production, and the development of anti-viral B and T cell immunity were not compromised by CARD9 deficiency. Syk or CARD9-deficient DCs but not macrophages showed impaired cytokine but not type-I interferon production in response to IFV in vitro, indicating a possible role for the Syk-CARD9 pathway in DCs in excessive inflammation of IFV-infected lungs. Therefore, inhibition of this pathway is an ideal therapeutic target for severe influenza pneumonia without affecting viral clearance.


Impact of overlapping risks of type 2 diabetes and obesity on coronavirus disease severity in the United States.

  • Wataru Ando‎ et al.
  • Scientific reports‎
  • 2021‎

The impact of overlapping risk factors on coronavirus disease (COVID-19) severity is unclear. To evaluate the impact of type 2 diabetes (T2D) and obesity on COVID-19 severity, we conducted a cohort study with 28,095 anonymized COVID-19 patients using data from the COVID-19 Research Database from January 1, 2020 to November 30, 2020. The mean age was 50.8 ± 17.5 years, and 11,802 (42%) patients were male. Data on age, race, sex, T2D complications, antidiabetic medication prescription, and body mass index ≥ 30 kg/m2 (obesity) were analysed using Cox proportional hazard models, with hospitalization risk and critical care within 30 days of COVID-19 diagnosis as the main outcomes. The risk scores were 0-4 for age ≥ 65 years, male sex, T2D, and obesity. Among the participants, 11,294 (61.9%) had obesity, and 4445 (15.8%) had T2D. T2D, obesity, and male sex were significantly associated with COVID-19 hospitalization risk. Regarding hospitalization risk scores, compared with those for hospitalization risk score 0 and critical care risk score 0, hazard ratios [95% confidence intervals] were 19.034 [10.470-34.600] and 55.803 [12.761-244.015] (P < 0.001) (P < 0.001), respectively, for risk score 4. Complications from diabetes and obesity increased hospitalization and critical care risks for COVID-19 patients.


TREM2 is a receptor for non-glycosylated mycolic acids of mycobacteria that limits anti-mycobacterial macrophage activation.

  • Ei'ichi Iizasa‎ et al.
  • Nature communications‎
  • 2021‎

Mycobacterial cell-wall glycolipids elicit an anti-mycobacterial immune response via FcRγ-associated C-type lectin receptors, including Mincle, and caspase-recruitment domain family member 9 (CARD9). Additionally, mycobacteria harbor immuno-evasive cell-wall lipids associated with virulence and latency; however, a mechanism of action is unclear. Here, we show that the DAP12-associated triggering receptor expressed on myeloid cells 2 (TREM2) recognizes mycobacterial cell-wall mycolic acid (MA)-containing lipids and suggest a mechanism by which mycobacteria control host immunity via TREM2. Macrophages respond to glycosylated MA-containing lipids in a Mincle/FcRγ/CARD9-dependent manner to produce inflammatory cytokines and recruit inducible nitric oxide synthase (iNOS)-positive mycobactericidal macrophages. Conversely, macrophages respond to non-glycosylated MAs in a TREM2/DAP12-dependent but CARD9-independent manner to recruit iNOS-negative mycobacterium-permissive macrophages. Furthermore, TREM2 deletion enhances Mincle-induced macrophage activation in vitro and inflammation in vivo and accelerates the elimination of mycobacterial infection, suggesting that TREM2-DAP12 signaling counteracts Mincle-FcRγ-CARD9-mediated anti-mycobacterial immunity. Mycobacteria, therefore, harness TREM2 for immune evasion.


Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian Hamster Model.

  • Takayuki Uematsu‎ et al.
  • The Journal of antibiotics‎
  • 2023‎

COVID-19, caused by SARS-CoV-2 infection, is currently among the most important public health concerns worldwide. Although several effective vaccines have been developed, there is an urgent clinical need for effective pharmaceutical treatments for treatment of COVID-19. Ivermectin, a chemical derivative of avermectin produced by Streptomyces avermitilis, is a macrocyclic lactone with antiparasitic activity. Recent studies have shown that ivermectin inhibits SARS-CoV-2 replication in vitro. In the present study, we investigated the in vivo effects of ivermectin in a hamster model of SARS-CoV-2 infection. The results of the present study demonstrate oral administration of ivermectin prior to SARS-CoV-2 infection in hamsters was associated with decreased weight loss and pulmonary inflammation. In addition, the administration of ivermectin reduced pulmonary viral titers and mRNA expression level of pro-inflammatory cytokines associated with severe COVID-19 disease. The administration of ivermectin rapidly induced the production of virus-specific neutralizing antibodies in the late stage of viral infection. Zinc concentrations leading to immune quiescence were also significantly higher in the lungs of ivermectin-treated hamsters compared to controls. These results indicate that ivermectin may have efficacy in reducing the development and severity of COVID-19 by affecting host immunity in a hamster model of SARS-CoV-2 infection.


Matrix metalloproteinase‑1 and microRNA‑486‑5p in urinary exosomes can be used to detect early lung cancer: A preliminary report.

  • Wataru Ando‎ et al.
  • Oncology letters‎
  • 2024‎

The present study describes a novel molecular-genetic method suitable for lung cancer (LC) screening in the work-place and at community health centers. Using urinary-isolated exosomes from 35 patients with LC and 40 healthy volunteers, the expression ratio of MMP-1/CD63, and the relative expression levels of both microRNA (miRNA)-21 and miRNA-486-5p were measured. MMP-1/CD63 expression ratio was significantly higher in patients with LC than in the healthy controls {1.342 [95% confidence interval (CI): 0.890-1.974] vs. 0.600 (0.490-0.900); P<0.0001}. The relative expression of miRNA-486-5p in male healthy controls was significantly different from that in female healthy controls, whereas there was no significant difference in miRNA-21. Receiver operating characteristic curve (ROC) analysis of MMP-1/CD63 showed 92.5% sensitivity and 54.3% specificity, whereas miRNA-486-5p showed 85% sensitivity and 70.8% specificity for men, and 70.0% sensitivity and 72.7% specificity for women. The logistic regression model used to evaluate the association of LC with the combination of MMP-1/CD63 and miRNA-486-5p revealed that the area under the ROC curve was 0.954 (95% CI: 0.908-1.000), and the model had 89% sensitivity and 88% specificity after adjusting for age, sex and smoking status. These data suggested that the combined analysis of MMP-1/CD63 and miRNA-486-5p in urinary exosomes may be used to detect patients with early-stage LC in the work-place and at community health centers, although confirmational studies are warranted.


Characterization of IL-17-producing T helper cells-like autoreactive T cells in aged mice.

  • Takayuki Uematsu‎ et al.
  • Experimental animals‎
  • 2019‎

IL-17-producing T helper cells (Th17) are attracting attention as a new CD4-positive subset of T cells, reported to be responsible for various autoimmune diseases through stimulation of the release of inflammatory cytokines from target cells. However, most investigations of Th17 mediation of autoimmune diseases have focused on the experimental autoimmune models derived from young animals, with few studies that have analyzed physiological factors such as aging. The present study analyzed autoreactive T cells established in a syngeneic mixed lymphocyte culture (sMLC) from aged mice and examined their similarity with Th17. IL-17-producing autoreactive CD4-intermediate T cells were observed in the sMLC; these expressed several stem cell markers or an immunosuppressive receptor PD-1 on the cell surface and so seemed to be different to typical Th17 cells. RT-PCR analysis revealed that purified Th17-like cells also expressed Il17a, Il17f, Il23r, Rorc and Tdt mRNA, but not Rag1 or Rag2 mRNA. These findings that it is likely that Th17-like cells are involved in autoimmune responses in aged mice.


Mint3 depletion-mediated glycolytic and oxidative alterations promote pyroptosis and prevent the spread of Listeria monocytogenes infection in macrophages.

  • Takayuki Uematsu‎ et al.
  • Cell death & disease‎
  • 2021‎

Listeria monocytogenes (LM) infection induces pyroptosis, a form of regulated necrosis, in host macrophages via inflammasome activation. Here, we examined the role of Mint3 in macrophages, which promotes glycolysis via hypoxia-inducible factor-1 activation, during the initiation of pyroptosis following LM infection. Our results showed that Mint3-deficient mice were more resistant to lethal listeriosis than wild-type (WT) mice. Additionally, the mutant mice showed higher levels of IL-1β/IL-18 in the peritoneal fluid during LM infection than WT mice. Moreover, ablation of Mint3 markedly increased the activation of caspase-1, maturation of gasdermin D, and pyroptosis in macrophages infected with LM in vitro, suggesting that Mint3 depletion promotes pyroptosis. Further analyses revealed that Mint3 depletion upregulates inflammasome assembly preceding pyroptosis via glycolysis reduction and reactive oxygen species production. Pharmacological inhibition of glycolysis conferred resistance to listeriosis in a Mint3-dependent manner. Moreover, Mint3-deficient mice treated with the caspase-1 inhibitor VX-765 were as susceptible to LM infection as WT mice. Taken together, these results suggest that Mint3 depletion promotes pyroptosis in host macrophages, thereby preventing the spread of LM infection. Mint3 may serve as a target for treating severe listeriosis by inducing pyroptosis in LM-infected macrophages.


Erythropoietin production by the kidney and the liver in response to severe hypoxia evaluated by Western blotting with deglycosylation.

  • Yukiko Yasuoka‎ et al.
  • Physiological reports‎
  • 2020‎

The detection of erythropoietin (Epo) protein by Western blotting has required pre-purification of the sample. We developed a new Western blot method to detect plasma and urinary Epo using deglycosylation. Epo in urine and tissue, and erythropoiesis-stimulating agents (ESAs) in urine were directly detected by our Western blotting. Plasma Epo and ESAs were not detected by direct application but were detected by our Western blotting after deglycosylation. The broad bands of Epo and ESAs were shifted to 22 kDa by deglycosylation except for PEG-bound epoetin β pegol. The 22 kDa band from an anemic patient's urine was confirmed by Liquid Chromatography/Mass Spectrometry (LC/MS) to contain human Epo. Severe hypoxia (7% O2, 4 hr) caused a 400-fold increase in deglycosylated Epo expression in rat kidneys, which is consistent with the increases in both Epo gene expression and plasma Epo concentration. Immunohistochemistry showed Epo expression in nephrons but not in interstitial cells under control conditions, and hypoxia increased Epo expression in interstitial cells but not in tubules. These data show that intrinsic Epo and all ESAs can be detected by Western blot either directly in urine or after deglycosylation in blood, and that the kidney but not the liver is the main site of Epo production in control and severe hypoxia. Our method will make the tests for Epo doping and detection easy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: