Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 172 papers

MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression.

  • Mitsuhiko Osaki‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2011‎

Pulmonary metastases are the main cause of death in patients with osteosarcoma, however, the molecular mechanisms of metastasis are not well understood. To detect lung metastasis-related microRNA (miRNA) in human osteosarcoma, we compared parental (HOS) and its subclone (143B) human osteosarcoma cell lines showing lung metastasis in a mouse model. miR-143 was the most downregulated miRNA (P < 0.01), and transfection of miR-143 into 143B significantly decreased its invasiveness, but not cell proliferation. Noninvasive optical imaging technologies revealed that intravenous injection of miR-143, but not negative control miRNA, significantly suppressed lung metastasis of 143B (P < 0.01). To search for miR-143 target mRNA in 143B, microarray analyses were performed using an independent RNA pool extracted by two different comprehensive miR-143-target mRNA collecting systems. Western blot analyses revealed that MMP-13 was mostly protein downregulated by miR-143. Immunohistochemistry using clinical samples clearly revealed MMP-13-positive cells in lung metastasis-positive cases, but not in at least three cases showing higher miR-143 expression in the no metastasis group. Taken together, these data indicated that the downregulation of miR-143 correlates with the lung metastasis of human osteosarcoma cells by promoting cellular invasion, probably via MMP-13 upregulation, suggesting that miRNA could be used to develop new molecular targets for osteosarcoma metastasis.


TSPAN12 is a critical factor for cancer-fibroblast cell contact-mediated cancer invasion.

  • Ryo Otomo‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2014‎

Communication between cancer cells and their microenvironment controls cancer progression. Although the tumor suppressor p53 functions in a cell-autonomous manner, it has also recently been shown to function in a non-cell-autonomous fashion. Although functional defects have been reported in p53 in stromal cells surrounding cancer, including mutations in the p53 gene and decreased p53 expression, the role of p53 in stromal cells during cancer progression remains unclear. We herein show that the expression of α-smooth muscle actin (α-SMA), a marker of cancer-associated fibroblasts (CAFs), was increased by the ablation of p53 in lung fibroblasts. CAFs enhanced the invasion and proliferation of lung cancer cells when cocultured with p53-depleted fibroblasts and required contact between cancer and stromal cells. A comprehensive analysis using a DNA chip revealed that tetraspanin 12 (TSPAN12), which belongs to the tetraspanin protein family, was derepressed by p53 knockdown. TSPAN12 knockdown in p53-depleted fibroblasts inhibited cancer cell proliferation and invasion elicited by coculturing with p53-depleted fibroblasts in vitro, and inhibited tumor growth in vivo. It also decreased CXC chemokine ligand 6 (CXCL6) secretion through the β-catenin signaling pathway, suggesting that cancer cell contact with TSPAN12 in fibroblasts transduced β-catenin signaling into fibroblasts, leading to the secretion of CXCL6 to efficiently promote invasion. These results suggest that stroma-derived p53 plays a pivotal role in epithelial cancer progression and that TSPAN12 and CXCL6 are potential targets for lung cancer therapy.


miR-125b and miR-100 Are Predictive Biomarkers of Response to Induction Chemotherapy in Osteosarcoma.

  • Daisuke Kubota‎ et al.
  • Sarcoma‎
  • 2016‎

Osteosarcoma is the most common primary malignancy in bone. Patients who respond poorly to induction chemotherapy are at higher risk of adverse prognosis. The molecular basis for such poor prognosis remains unclear. We investigated miRNA expression in eight open biopsy samples to identify miRNAs predictive of response to induction chemotherapy and thus maybe used for risk stratification therapy. The samples were obtained from four patients with inferior necrosis (Huvos I/II) and four patients with superior necrosis (Huvos III/IV) following induction chemotherapy. We found six miRNAs, including miR-125b and miR-100, that were differentially expressed > 2-fold (p < 0.05) in patients who respond poorly to treatment. The association between poor prognosis and the abundance of miR-125b and miR-100 was confirmed by quantitative reverse transcriptase-polymerase chain reaction in 20 additional osteosarcoma patients. Accordingly, overexpression of miR-125b and miR-100 in three osteosarcoma cell lines enhanced cell proliferation, invasiveness, and resistance to chemotherapeutic drugs such as methotrexate, doxorubicin, and cisplatin. In addition, overexpression of miR-125b blocked the ability of these chemotherapy agents to induce apoptosis. As open biopsy is routinely performed to diagnose osteosarcoma, levels of miR-125b and miR-100 in these samples may be used as basis for risk stratification therapy.


Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis.

  • Tomonori Makiguchi‎ et al.
  • Respiratory research‎
  • 2016‎

Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis. Although the median survival is 3 years, the clinical course varies to a large extent among IPF patients. To date, there has been no definitive prognostic marker. Extracellular vesicles (EVs) are known to hold nucleic acid, including microRNAs, and to regulate gene expression in the recipient cells. Moreover, EVs have been shown to express distinct surface proteins or enveloped microRNAs depending on the parent cell or pathological condition. We aimed to identify serum EV microRNAs that would be prognostic for IPF.


miR-29 represses the activities of DNA methyltransferases and DNA demethylases.

  • Sumiyo Morita‎ et al.
  • International journal of molecular sciences‎
  • 2013‎

Members of the microRNA-29 (miR-29) family directly target the DNA methyltransferases, DNMT3A and DNMT3B. Disturbances in the expression levels of miR-29 have been linked to tumorigenesis and tumor aggressiveness. Members of the miR-29 family are currently thought to repress DNA methylation and suppress tumorigenesis by protecting against de novo methylation. Here, we report that members of the miR-29 family repress the activities of DNA methyltransferases and DNA demethylases, which have opposing roles in control of DNA methylation status. Members of the miR-29 family directly inhibited DNA methyltransferases and two major factors involved in DNA demethylation, namely tet methylcytosine dioxygenase 1 (TET1) and thymine DNA glycosylase (TDG). Overexpression of miR-29 upregulated the global DNA methylation level in some cancer cells and downregulated DNA methylation in other cancer cells, suggesting that miR-29 suppresses tumorigenesis by protecting against changes in the existing DNA methylation status rather than by preventing de novo methylation of DNA.


Efficacy of adjuvant chemotherapy for non-small cell lung cancer assessed by metastatic potential associated with ACTN4.

  • Nami Miura‎ et al.
  • Oncotarget‎
  • 2016‎

Although several clinical trials have demonstrated the benefits of platinum-combined adjuvant chemotherapy for resected non-small cell lung cancer (NSCLC), predictive biomarkers for the efficacy of such therapy have not yet been identified. Selection of patients with high metastatic ability in the early stage of non-small cell lung cancer (NSCLC) has the potential to predict clinical benefit of adjuvant chemotherapy (ADJ).In order to develop a predictive biomarker for efficacy of ADJ, we reanalyzed patient data using a public database enrolled by JBR.10, which was a clinical trial to probe the clinical benefits of ADJ in stage-IB/II patients with NSCLC. The patients who were enrolled by JBR.10 were classified into 2 subgroups according to expression of the ACTN4 transcript: ACTN4 positive (ACTN4 (+)) and ACTN4 negative (ACTN4 (-)). In the ACTN4 (+) group, overall survival (OS) was significantly higher in the ADJ subgroup compared with the observation subgroup (OBS), indicating a significant survival benefit of ADJ. However, no difference in OS was found between ADJ and OBS groups in ACTN4 (-). Although ACTN4 expression level did not correlate with the chemosensitivity of cancer cell lines for cytotoxic drugs, the metastatic potential of A549 lung adenocarcinoma cells was significantly reduced by ACTN4 shRNA in in vitro assays and in an animal transplantation model. The clinical and preclinical data suggested that ACTN4 is a potential predictive biomarker for efficacy of ADJ in stage-IB/II patients with NSCLC, by reflecting the metastatic potential of tumor cells.


An integrative genomic analysis revealed the relevance of microRNA and gene expression for drug-resistance in human breast cancer cells.

  • Yusuke Yamamoto‎ et al.
  • Molecular cancer‎
  • 2011‎

Acquisition of drug-resistance in cancer has led to treatment failure, however, their mechanisms have not been clarified yet. Recent observations indicated that aberrant expressed microRNA (miRNA) caused by chromosomal alterations play a critical role in the initiation and progression of cancer. Here, we performed an integrated genomic analysis combined with array-based comparative hybridization, miRNA, and gene expression microarray to elucidate the mechanism of drug-resistance.


One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation.

  • Sumiyo Morita‎ et al.
  • Genomics‎
  • 2007‎

To elucidate the epigenetic role of RNAi in mammals, we disrupted the gene for Eif2c2 (Ago2), which works as the sole slicer of RNAi in the Argonaute family. In mice, disruption of Eif2c2 leads to embryonic lethality early in development after the implantation stage. This phenotype is completely different from that in a previous report, but somewhat similar to the disruption of Dicer1, another important component of RNAi. We also show that Eif2c2 is not required for the maintenance of DNA methylation in imprinted genes, centromeric repeats, and Xist. This suggests that developmental defects in the Eif2c2-deficient mouse are caused not at the transcriptional level, but rather at the posttranscriptional level through the miRNA-protein complex.


The p53 activator overcomes resistance to ALK inhibitors by regulating p53-target selectivity in ALK-driven neuroblastomas.

  • Makoto Miyazaki‎ et al.
  • Cell death discovery‎
  • 2018‎

Anaplastic lymphoma kinase (ALK) is an oncogenic receptor tyrosine kinase that is activated by gene amplification and mutation in neuroblastomas. ALK inhibitors can delay the progression of ALK-driven cancers, but are of limited use owing to ALK inhibitor resistance. Here, we show that resistance to ALK inhibitor in ALK-driven neuroblastomas can be attenuated by combination treatment with a p53 activator. Either ALK inhibition or p53 activator treatment induced cell cycle arrest, whereas combination treatment induced apoptosis, and prevented tumour relapse both in vitro and in vivo. This shift toward apoptosis, and away from cell-cycle arrest, in the presence of an ALK inhibitor and a p53 activator, is mediated by inhibition of the ALK-AKT-FOXO3a axis leading to a specific upregulation of SOX4. SOX4 cooperates with p53 to upregulate the pro-apoptotic protein PUMA. These data therefore suggest a novel combination therapy strategy for treating ALK-driven neuroblastomas.


Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A.

  • Kyoko Hashimoto‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940-overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment.


The Sox2 promoter-driven CD63-GFP transgenic rat model allows tracking of neural stem cell-derived extracellular vesicles.

  • Aya Yoshimura‎ et al.
  • Disease models & mechanisms‎
  • 2018‎

Extracellular vesicles (EVs) can modulate microenvironments by transferring biomolecules, including RNAs and proteins derived from releasing cells, to target cells. To understand the molecular mechanisms maintaining the neural stem cell (NSC) niche through EVs, a new transgenic (Tg) rat strain that can release human CD63-GFP-expressing EVs from the NSCs was established. Human CD63-GFP expression was controlled under the rat Sox2 promoter (Sox2/human CD63-GFP), and it was expressed in undifferentiated fetal brains. GFP signals were specifically observed in in vitro cultured NSCs obtained from embryonic brains of the Tg rats. We also demonstrated that embryonic NSC (eNSC)-derived EVs were labelled by human CD63-GFP. Furthermore, when we examined the transfer of EVs, eNSC-derived EVs were found to be incorporated into astrocytes and eNSCs, thus implying an EV-mediated communication between different cell types around NSCs. This new Sox2/human CD63-GFP Tg rat strain should provide resources to analyse the cell-to-cell communication via EVs in NSC microenvironments.


A combination of circulating miRNAs for the early detection of ovarian cancer.

  • Akira Yokoi‎ et al.
  • Oncotarget‎
  • 2017‎

Ovarian cancer is the leading cause of gynecologic cancer mortality, due to the difficulty of early detection. Current screening methods lack sufficient accuracy, and it is still challenging to propose a new early detection method that improves patient outcomes with less-invasiveness. Although many studies have suggested the utility of circulating microRNAs in cancer detection, their potential for early detection remains elusive. Here, we develop novel predictive models using a combination of 8 circulating serum miRNAs. This method was able to successfully distinguish ovarian cancer patients from healthy controls (area under the curve, 0.97; sensitivity, 0.92; and specificity, 0.91) and early-stage ovarian cancer from patients with benign tumors (0.91, 0.86 and 0.83, respectively). This method also enables subtype classification in 4 types of epithelial ovarian cancer. Furthermore, it is found that most of the 8 miRNAs were packaged in extracellular vesicles, including exosomes, derived from ovarian cancer cells, and they were circulating in murine blood stream. The circulating miRNAs described in this study may serve as biomarkers for ovarian cancer patients. Early detection and subtype determination prior to surgery are crucial for clinicians to design an effective treatment strategy for each patient, as is the goal of precision medicine.


Assessment of the Diagnostic Utility of Serum MicroRNA Classification in Patients With Diffuse Glioma.

  • Makoto Ohno‎ et al.
  • JAMA network open‎
  • 2019‎

A blood-based screening tool for detecting diffuse glioma is necessary to improve clinical outcomes.


Serum exosomal microRNA-34a as a potential biomarker in epithelial ovarian cancer.

  • Kazuya Maeda‎ et al.
  • Journal of ovarian research‎
  • 2020‎

Ovarian cancer (OC) is a leading cause of cancer-related death in women, and thus an accurate diagnosis of the predisposition and its early detection is necessary. The aims of this study were to determine whether serum exosomal microRNA-34a (miR-34a) in ovarian cancer could be used as a potential biomarker.


Quercetin Inhibits Lef1 and Resensitizes Docetaxel-Resistant Breast Cancer Cells.

  • Marta Prieto-Vila‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Drug resistance is a major problem for breast cancer patients. Docetaxel is an anti-mitotic agent that serves as first line of treatment in metastatic breast cancer, however it is susceptible to cellular drug resistance. Drug-resistant cells are able to spread during treatment, leading to treatment failure and eventually metastasis, which remains the main cause for cancer-associated death. In previous studies, we used single-cell technologies and identified a set of genes that exhibit increased expression in drug-resistant cells, and they are mainly regulated by Lef1. Furthermore, upregulating Lef1 in parental cells caused them to become drug resistant. Therefore, we hypothesized that inhibiting Lef1 could resensitize cells to docetaxel. Here, we confirmed that Lef1 inhibition, especially on treatment with the small molecule quercetin, decreased the expression of Lef1 and resensitized cells to docetaxel. Our results demonstrate that Lef1 inhibition also downregulated ABCG2, Vim, and Cav1 expression and equally decreased Smad-dependent TGF-β signaling pathway activation. Likewise, these two molecules worked in a synergetic manner, greatly reducing the viability of drug-resistant cells. Prior studies in phase I clinical trials have already shown that quercetin can be safely administered to patients. Therefore, the use of quercetin as an adjuvant treatment in addition to docetaxel for the treatment of breast cancer may be a promising therapeutic approach.


A miRNA-based diagnostic model predicts resectable lung cancer in humans with high accuracy.

  • Keisuke Asakura‎ et al.
  • Communications biology‎
  • 2020‎

Lung cancer, the leading cause of cancer death worldwide, is most frequently detected through imaging tests. In this study, we investigated serum microRNAs (miRNAs) as a possible early screening tool for resectable lung cancer. First, we used serum samples from participants with and without lung cancer to comprehensively create 2588 miRNAs profiles; next, we established a diagnostic model based on the combined expression levels of two miRNAs (miR-1268b and miR-6075) in the discovery set (208 lung cancer patients and 208 non-cancer participants). The model displayed a sensitivity of 99% and specificity of 99% in the validation set (1358 patients and 1970 non-cancer participants) and exhibited high sensitivity regardless of histological type and pathological TNM stage of the cancer. Moreover, the diagnostic index markedly decreased after lung cancer resection. Thus, the model we developed has the potential to markedly improve screening for resectable lung cancer.


Small extracellular vesicles derived from interferon-γ pre-conditioned mesenchymal stromal cells effectively treat liver fibrosis.

  • Suguru Takeuchi‎ et al.
  • NPJ Regenerative medicine‎
  • 2021‎

Mesenchymal stromal cells (MSCs) are used for ameliorating liver fibrosis and aiding liver regeneration after cirrhosis; Here, we analyzed the therapeutic potential of small extracellular vesicles (sEVs) derived from interferon-γ (IFN-γ) pre-conditioned MSCs (γ-sEVs). γ-sEVs effectively induced anti-inflammatory macrophages with high motility and phagocytic abilities in vitro, while not preventing hepatic stellate cell (HSC; the major source of collagen fiber) activation in vitro. The proteome analysis of MSC-derived sEVs revealed anti-inflammatory macrophage inducible proteins (e.g., annexin-A1, lactotransferrin, and aminopeptidase N) upon IFN-γ stimulation. Furthermore, by enabling CX3CR1+ macrophage accumulation in the damaged area, γ-sEVs ameliorated inflammation and fibrosis in the cirrhosis mouse model more effectively than sEVs. Single cell RNA-Seq analysis revealed diverse effects, such as induction of anti-inflammatory macrophages and regulatory T cells, in the cirrhotic liver after γ-sEV administration. Overall, IFN-γ pre-conditioning altered sEVs resulted in efficient tissue repair indicating a new therapeutic strategy.


Transplantation of chemically-induced liver progenitor cells ameliorates hepatic fibrosis in mice with diet-induced nonalcoholic steatohepatitis.

  • Shunsuke Murakami‎ et al.
  • Regenerative therapy‎
  • 2022‎

Chemically-induced liver progenitors (CLiPs) have promising applications in liver regenerative medicine. We aimed to clarify the efficacy of CLiPs for ameliorating fibrosis in a diet-induced nonalcoholic steatohepatitis rat model, since nonalcoholic fatty liver disease is currently recognized as the most common form of chronic liver disease in developed countries.


JAMIR-eQTL: Japanese genome-wide identification of microRNA expression quantitative trait loci across dementia types.

  • Shintaro Akiyama‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2021‎

MicroRNAs (miRNAs) are small non-coding RNAs shown to regulate gene expression by binding to complementary transcripts. Genetic variants, including single-nucleotide polymorphisms and short insertions/deletions, contribute to traits and diseases by influencing miRNA expression. However, the association between genetic variation and miRNA expression remains to be elucidated. Here, by using genotype data and miRNA expression data from 3448 Japanese serum samples, we developed a computational pipeline to systematically identify genome-wide miRNA expression quantitative trait loci (miR-eQTLs). Not only did we identify a total of 2487 cis-miR-eQTLs and 3 155 773 trans-miR-eQTLs at a false discovery rate of <0.05 in six dementia types (Alzheimer's disease, dementia with Lewy bodies, vascular dementia, frontotemporal lobar degeneration, normal-pressure hydrocephalus and mild cognitive impairment) and all samples, including those from patients with other types of dementia, but also we examined the commonality and specificity of miR-eQTLs among dementia types. To enable data searching and downloading of these cis- and trans-eQTLs, we developed a user-friendly database named JAMIR-eQTL, publicly available at https://www.jamir-eqtl.org/. This is the first miR-eQTL database designed for dementia types. Our integrative and comprehensive resource will contribute to understanding the genetic basis of miRNA expression as well as to the discovery of deleterious mutations, particularly in dementia studies. Database URL: https://www.jamir-eqtl.org/.


Novel Platform for Regulation of Extracellular Vesicles and Metabolites Secretion from Cells Using a Multi-Linkable Horizontal Co-Culture Plate.

  • Takeo Shimasaki‎ et al.
  • Micromachines‎
  • 2021‎

Microfluidics is applied in biotechnology research via the creation of microfluidic channels and reaction vessels. Filters are considered to be able to simulate microfluidics. A typical example is the cell culture insert, which comprises two vessels connected by a filter. Cell culture inserts have been used for years to study cell-to-cell communication. These systems generally have a bucket-in-bucket structure and are hereafter referred to as a vertical-type co-culture plate (VTCP). However, VTCPs have several disadvantages, such as the inability to simultaneously observe samples in both containers and the inability of cell-to-cell communication through the filters at high cell densities. In this study, we developed a novel horizontal-type co-culture plate (HTCP) to overcome these disadvantages and confirm its performance. In addition, we clarified the migration characteristics of substances secreted from cells in horizontal co-culture vessels. It is generally assumed that less material is exchanged between the horizontal vessels. However, the extracellular vesicle (EV) transfer was found to be twice as high when using HTCP. Other merits include control of the degree of co-culture via the placement of cells. We believe that this novel HTCP container will facilitate research on cell-to-cell communication in various fields.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: