2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2.

  • Brett H Herzog‎ et al.
  • Nature‎
  • 2013‎

Circulating lymphocytes continuously enter lymph nodes for immune surveillance through specialized blood vessels named high endothelial venules, a process that increases markedly during immune responses. How high endothelial venules (HEVs) permit lymphocyte transmigration while maintaining vascular integrity is unknown. Here we report a role for the transmembrane O-glycoprotein podoplanin (PDPN, also known as gp38 and T1α) in maintaining HEV barrier function. Mice with postnatal deletion of Pdpn lost HEV integrity and exhibited spontaneous bleeding in mucosal lymph nodes, and bleeding in the draining peripheral lymph nodes after immunization. Blocking lymphocyte homing rescued bleeding, indicating that PDPN is required to protect the barrier function of HEVs during lymphocyte trafficking. Further analyses demonstrated that PDPN expressed on fibroblastic reticular cells, which surround HEVs, functions as an activating ligand for platelet C-type lectin-like receptor 2 (CLEC-2, also known as CLEC1B). Mice lacking fibroblastic reticular cell PDPN or platelet CLEC-2 exhibited significantly reduced levels of VE-cadherin (also known as CDH5), which is essential for overall vascular integrity, on HEVs. Infusion of wild-type platelets restored HEV integrity in Clec-2-deficient mice. Activation of CLEC-2 induced release of sphingosine-1-phosphate from platelets, which promoted expression of VE-cadherin on HEVs ex vivo. Furthermore, draining peripheral lymph nodes of immunized mice lacking sphingosine-1-phosphate had impaired HEV integrity similar to Pdpn- and Clec-2-deficient mice. These data demonstrate that local sphingosine-1-phosphate release after PDPN-CLEC-2-mediated platelet activation is critical for HEV integrity during immune responses.


Metabolomic analysis of pathways related to rice grain chalkiness by a notched-belly mutant with high occurrence of white-belly grains.

  • Zhaomiao Lin‎ et al.
  • BMC plant biology‎
  • 2017‎

Grain chalkiness is a highly undesirable trait deleterious to rice appearance and milling quality. The physiological and molecular foundation of chalkiness formation is still partially understood, because of the complex interactions between multiple genes and growing environments.


Comparative Genomic Analysis Provides Insights into the Phylogeny, Resistome, Virulome, and Host Adaptation in the Genus Ewingella.

  • Zhenghui Liu‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

Ewingella americana is a cosmopolitan bacterial pathogen that has been isolated from many hosts. Here, we sequenced a high-quality genome of E. americana B6-1 isolated from Flammulina filiformis, an important cultivated mushroom, performed a comparative genomic analysis with four other E. americana strains from various origins, and tested the susceptibility of B6-1 to antibiotics. The genome size, predicted genes, and GC (guanine-cytosine) content of B6-1 was 4.67 Mb, 4301, and 53.80%, respectively. The origin of the strains did not significantly affect the phylogeny, but mobile genetic elements shaped the evolution of the genus Ewingella. The strains encoded a set of common genes for type secretion, virulence effectors, CAZymes, and toxins required for pathogenicity in all hosts. They also had antibiotic resistance, pigments to suppress or evade host defense responses, as well as genes for adaptation to different environmental conditions, including temperature, oxidation, and nutrients. These findings provide a better understanding of the virulence, antibiotic resistance, and host adaptation strategies of Ewingella, and they also contribute to the development of effective control strategies.


Insulin sensitivity in long-lived growth hormone-releasing hormone knockout mice.

  • Fang Zhang‎ et al.
  • Aging‎
  • 2020‎

Our previous studies showed that loss-of-function mutation of growth hormone releasing hormone (GHRH) results in increased longevity and enhanced insulin sensitivity in mice. However, the details of improved insulin action and tissue-specific insulin signaling are largely unknown in this healthy-aging mouse model. We conducted hyperinsulinemic-euglycemic clamp to investigate mechanisms underlying enhanced insulin sensitivity in growth hormone (GH) deficient mice. Further, we assessed in vivo tissue-specific insulin activity via activation of PI3K-AKT and MAPK-ERK1/2 cascades using western blot. Clamp results showed that the glucose infusion rate required for maintaining euglycemia was much higher in GHRH-/- mice compared to WT controls. Insulin-mediated glucose production was largely suppressed, whereas glucose uptake in skeletal muscle and brown adipose tissue were significant enhanced in GHRH-/- mice compared to WT controls. Enhanced capacity of insulin-induced activation of the PI3K-AKT and MAPK-ERK1/2 signaling were observed in a tissue-specific manner in GHRH-/- mice. Enhanced systemic insulin sensitivity in long-lived GHRH-/- mice is associated with differential activation of insulin signaling cascades among various organs. Improved action of insulin in the insulin sensitive tissues is likely to mediate the prolonged longevity and healthy-aging effects of GH deficiency in mice.


Proteomic analysis of proteins related to rice grain chalkiness using iTRAQ and a novel comparison system based on a notched-belly mutant with white-belly.

  • Zhaomiao Lin‎ et al.
  • BMC plant biology‎
  • 2014‎

Grain chalkiness is a complex trait adversely affecting appearance and milling quality, and therefore has been one of principal targets for rice improvement. Eliminating chalkiness from rice has been a daunting task due to the complex interaction between genotype and environment and the lack of molecular markers. In addition, the molecular mechanisms underlying grain chalkiness formation are still imperfectly understood.


Characterization and Genome Analysis of Cladobotryum mycophilum, the Causal Agent of Cobweb Disease of Morchella sextelata in China.

  • Zhenghui Liu‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

Cobweb disease is a fungal disease that can cause serious damage to edible mushrooms worldwide. To investigate cobweb disease in Morchella sextelata in Guizhou Province, China, we isolated and purified the pathogen responsible for the disease. Through morphological and molecular identification and pathogenicity testing on infected M. sextelata, we identified Cladobotryum mycophilum as the cause of cobweb disease in this region. This is the first known occurrence of this pathogen causing cobweb disease in M. sextelata anywhere in the world. We then obtained the genome of C. mycophilum BJWN07 using the HiFi sequencing platform, resulting in a high-quality genome assembly with a size of 38.56 Mb, 10 contigs, and a GC content of 47.84%. We annotated 8428 protein-coding genes in the genome, including many secreted proteins, host interaction-related genes, and carbohydrate-active enzymes (CAZymes) related to the pathogenesis of the disease. Our findings shed new light on the pathogenesis of C. mycophilum and provide a theoretical basis for developing potential prevention and control strategies for cobweb disease.


Efficiency of Sucrose to Starch Metabolism Is Related to the Initiation of Inferior Grain Filling in Large Panicle Rice.

  • Zhengrong Jiang‎ et al.
  • Frontiers in plant science‎
  • 2021‎

The poor grain-filling initiation often causes the poor development of inferior spikelets (IS) which limits the yield potential of large panicle rice (Oryza sativa L.). However, it remains unclear why IS often has poor grain-filling initiation. In addressing this problem, this study conducted a field experiment involving two large panicle rice varieties, namely CJ03 and W1844, in way of removing the superior spikelets (SS) during flowering to force enough photosynthate transport to the IS. The results of this study showed that the grain-filling initiation of SS was much earlier than the IS in CJ03 and W1844, whereas the grain-filling initiation of IS in W1844 was evidently more promoted compared with the IS of CJ03 by removing spikelets. The poor sucrose-unloading ability, i.e., carbohydrates contents, the expression patterns of OsSUTs, and activity of CWI, were highly improved in IS of CJ03 and W1844 by removing spikelets. However, there was a significantly higher rise in the efficiency of sucrose to starch metabolism, i.e., the expression patterns of OsSUS4 and OsAGPL1 and activities of SuSase and AGPase, for IS of W1844 than that of CJ03. Removing spikelets also led to the changes in sugar signaling of T6P and SnRK1 level. These changes might be related to the regulation of sucrose to starch metabolism. The findings of this study suggested that poor sucrose-unloading ability delays the grain-filling initiation of IS. Nonetheless, the efficiency of sucrose to starch metabolism is also strongly linked with the grain-filling initiation of IS.


Using Azadirachtin to Transform Spodoptera frugiperda from Pest to Natural Enemy.

  • Sukun Lin‎ et al.
  • Toxins‎
  • 2021‎

Spodoptera frugiperda and Rhopalosiphum maidis, as main pests, seriously harm the safety of maize. At present, chemical pesticides are mainly used to control these pests. However, due to residue and resistance problems, more green, environmentally benign, simple preventive control technology is needed. In this study, we reported the reason for the antifeedant activity of azadirachtin on S. frugiperda and proposed that S. frugiperda treated with azadirachtin would turn from pest into natural enemy. S. frugiperda showed an obvious antifeeding phenomenon to maize leaf treated with various azadirachtin concentrations (0.5~20 mg/L). It was found that maize leaf treated with 1 mg/L of azadirachtin has a stimulating effect on the antenna and sensillum basiconicum of S. frugiperda, and azadirachtin can affect the feeding behavior of S. frugiperda. Additionally, after treating maize leaves or maize leaves + R. maidis with 1 mg/L of azadirachtin, the predatory behavior of S. frugiperda changed from a preference for eating maize leaves to R. maidis. Moreover, the molting of R. maidis can promote the change of this predatory behavior. Our results, for the first time, propose that the combined control technology of azadirachtin insecticide and biological control could turn S. frugiperda from pest into natural enemy, which can effectively eliminate R. maidis and protect maize. This combined control technology provides a new way for pest management and has good ecological, environmental, and economic benefits.


Blocking neutrophil integrin activation prevents ischemia-reperfusion injury.

  • Tadayuki Yago‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia-reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin's capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia-reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin-mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin-mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia-reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable.


Complementary Proteome and Transcriptome Profiling in Developing Grains of a Notched-Belly Rice Mutant Reveals Key Pathways Involved in Chalkiness Formation.

  • Zhaomiao Lin‎ et al.
  • Plant & cell physiology‎
  • 2017‎

Rice grain chalkiness is a highly complex trait involved in multiple metabolic pathways and controlled by polygenes and growth conditions. To uncover novel aspects of chalkiness formation, we performed an integrated profiling of gene activity in the developing grains of a notched-belly rice mutant. Using exhaustive tandem mass spectrometry-based shotgun proteomics and whole-genome RNA sequencing to generate a nearly complete catalog of expressed mRNAs and proteins, we reliably identified 38,476 transcripts and 3,840 proteins. Comparison between the translucent part and chalky part of the notched-belly grains resulted in only a few differently express genes (240) and differently express proteins (363), thus making it possible to focus on 'core' genes or common pathways. Several novel key pathways were identified as of relevance to chalkiness formation, in particular the shift of C and N metabolism, the down-regulation of ribosomal proteins and the resulting low abundance of storage proteins especially the 13 kDa prolamin subunit, and the suppressed photosynthetic capacity in the pericarp of the chalky part. Further, genes and proteins as transporters for carbohydrates, amino acid/peptides, proteins, lipids and inorganic ions showed an increasing expression pattern in the chalky part of the notched-belly grains. Similarly, transcripts and proteins of receptors for auxin, ABA, ethylene and brassinosteroid were also up-regulated. In summary, this joint analysis of transcript and protein profiles provides a comprehensive reference map of gene activity regarding the physiological state in the chalky endosperm.


L-selectin mechanochemistry restricts neutrophil priming in vivo.

  • Zhenghui Liu‎ et al.
  • Nature communications‎
  • 2017‎

Circulating neutrophils must avoid premature activation to prevent tissue injury. The leukocyte adhesion receptor L-selectin forms bonds with P-selectin glycoprotein ligand-1 (PSGL-1) on other leukocytes and with peripheral node addressin (PNAd) on high endothelial venules. Mechanical forces can strengthen (catch) or weaken (slip) bonds between biological molecules. How these mechanochemical processes influence function in vivo is unexplored. Here we show that mice expressing an L-selectin mutant (N138G) have altered catch bonds and prolonged bond lifetimes at low forces. Basal lymphocyte homing and neutrophil recruitment to inflamed sites are normal. However, circulating neutrophils form unstable aggregates and are unexpectedly primed to respond robustly to inflammatory mediators. Priming requires signals transduced through L-selectin N138G after it engages PSGL-1 or PNAd. Priming enhances bacterial clearance but increases inflammatory injury and enlarges venous thrombi. Thus, L-selectin mechanochemistry limits premature activation of neutrophils. Our results highlight the importance of probing how mechanochemistry functions in vivo.


Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice.

  • Fei Weng‎ et al.
  • Scientific reports‎
  • 2017‎

The objectives of this study were to explore the mechanism by which the lodging resistance of the rice population during the late growth period responds to low-temperature, overcast and rainy weather during the reproductive growth stage. Field experiments were conducted using indica rice Yliangyou2 (lodging-resistance variety), IIyou084 (lodging-susceptible variety) and japonica rice Wuyunjing23 (lodging-resistance variety) and W3668 (lodging- susceptible variety) in 2013 (high temperature and strong radiation during the rice reproductive growth stage), 2012 and 2014 (low temperature and weak radiation during rice reproductive growth stage). The results showed that the length of the basal internodes and the height of the gravitational centres were greater in plants grown in 2014. Dry weight of basal culms, culm diameter, lignin content and total content of structural carbohydrates (lignin and cellulose) in basal internodes were reduced in these plants, causing a significant reduction in the bending stress and lodging resistance of the rice stems. Low-temperature, overcast and rainy weather had a greater effect on lodging resistance in indica rice compared with japonica rice. This was reflected in a greater reduction in the lignin content of the indica rice stems, which yielded a significantly lower breaking strength and bending stress.


Leaf to panicle ratio (LPR): a new physiological trait indicative of source and sink relation in japonica rice based on deep learning.

  • Zongfeng Yang‎ et al.
  • Plant methods‎
  • 2020‎

Identification and characterization of new traits with sound physiological foundation is essential for crop breeding and production management. Deep learning has been widely used in image data analysis to explore spatial and temporal information on crop growth and development, thus strengthening the power of identification of physiological traits. Taking the advantage of deep learning, this study aims to develop a novel trait of canopy structure that integrate source and sink in japonica rice.


Resistance Sources to Brown Blotch Disease (Pseudomonas tolaasii) in a Diverse Collection of Pleurotus Mushroom Strains.

  • Benjamin Azu Okorley‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2019‎

Brown blotch disease (BBD) caused by Pseudomonas tolaasii is one of the most devastating diseases of Pleurotus spp. worldwide. Breeding for resistant strains is the most effective method for controlling BBD. To identify resistant germplasm for BBD management, 97 strains comprising 21 P. cf. floridanus, 20 P. ostreatus, and 56 P. pulmonarius were screened by two different methods; namely, inoculation of the pathogen on the mushroom pileus (IMP) and on the spawned substrate (IMSS) under controlled conditions. Out of the 97 strains screened, 22 P. pulmonarius, and four P. cf. floridanus were moderately resistant to BBD using the IMP method. Eleven P. pulmonarius, six P. cf. florida, and one P. ostreatus strains were highly resistant to BBD using the IMSS method. All of the 97 strains showed varying degrees of susceptibility using the IMP method, but eight strains were completely resistant using the IMSS method. Combining these two methods, five strains were highly resistant (four P. pulmonarius and one P. cf. floridanus) and 11 were moderately resistant (eight P. pulmonarius and three P. cf. floridanus). The resistance sources to P. tolaasii identified in P. pulmonarius and P. cf. floridanus could be used for further breeding of Pleurotus spp.


The solute carrier family 7 member 11 (SLC7A11) is regulated by LH/androgen and required for cystine/glutathione homeostasis in mouse Sertoli cells.

  • Zhenghui Liu‎ et al.
  • Molecular and cellular endocrinology‎
  • 2022‎

Luteinizing hormone (LH) stimulates testosterone production from Leydig cells. Both LH and testosterone play important roles in spermatogenesis and male fertility. To identify LH - and testosterone - responsive transporter genes that play key roles in spermatogenesis, we performed large-scale gene expression analyses on testes obtained from adult control and Lhb knockout mice. We found a significant reduction in cystine/glutamate transporter encoding Slc7a11 mRNA in testes of Lhb null mice. We observed that Slc7a11/SLC7A11 expression was initiated pre-pubertally and developmentally regulated in mouse testis. Immunolocalization studies confirmed that SLC7A11 was mostly expressed in Sertoli cells in testes of control and germ cell-deficient mice. Western blot analyses indicated that SLC7A11 was significantly reduced in testes of mutant mice lacking either LH or androgen receptor selectively in Sertoli cells. Genetic and pharmacological rescue of Lhb knockout mice restored the testicular expression of Slc7a11 comparable to that observed in controls. Additionally, Slc7a11 mRNA was significantly suppressed upon Sertoli cell/testicular damage induced in mice by cadmium treatment. Knockdown of Slc7a11 in vitro in TM4 Sertoli cells or treatment of mice with sulfasalazine, a SLC7A11 inhibitor caused a significant reduction in intracellular cysteine and glutathione levels but glutamate content remained unchanged as determined by metabolomic analysis. Knockdown of Slc7a11 resulted in compensatory upregulation of other glutamate transporters belonging to the Slc1a family presumably to maintain intracellular glutamate levels. Collectively, our studies identified that SLC7A11 is an LH/testosterone-regulated transporter that is required for cysteine/glutathione but not glutamate homeostasis in mouse Sertoli cells.


Epsin-mediated degradation of IP3R1 fuels atherosclerosis.

  • Yunzhou Dong‎ et al.
  • Nature communications‎
  • 2020‎

The epsin family of endocytic adapter proteins are widely expressed, and interact with both proteins and lipids to regulate a variety of cell functions. However, the role of epsins in atherosclerosis is poorly understood. Here, we show that deletion of endothelial epsin proteins reduces inflammation and attenuates atherosclerosis using both cell culture and mouse models of this disease. In atherogenic cholesterol-treated murine aortic endothelial cells, epsins interact with the ubiquitinated endoplasmic reticulum protein inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), which triggers proteasomal degradation of this calcium release channel. Epsins potentiate its degradation via this interaction. Genetic reduction of endothelial IP3R1 accelerates atherosclerosis, whereas deletion of endothelial epsins stabilizes IP3R1 and mitigates inflammation. Reduction of IP3R1 in epsin-deficient mice restores atherosclerotic progression. Taken together, epsin-mediated degradation of IP3R1 represents a previously undiscovered biological role for epsin proteins and may provide new therapeutic targets for the treatment of atherosclerosis and other diseases.


Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow.

  • Tadayuki Yago‎ et al.
  • The Journal of cell biology‎
  • 2002‎

Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin-binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-beta-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin-ligand interactions.


Genome Sequencing of Cladobotryum protrusum Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease Pathogen on Cultivated Mushroom.

  • Frederick Leo Sossah‎ et al.
  • Genes‎
  • 2019‎

Cladobotryum protrusum is one of the mycoparasites that cause cobweb disease on cultivated edible mushrooms. However, the molecular mechanisms of evolution and pathogenesis of C. protrusum on mushrooms are largely unknown. Here, we report a high-quality genome sequence of C. protrusum using the single-molecule, real-time sequencing platform of PacBio and perform a comparative analysis with closely related fungi in the family Hypocreaceae. The C. protrusum genome, the first complete genome to be sequenced in the genus Cladobotryum, is 39.09 Mb long, with an N50 of 4.97 Mb, encoding 11,003 proteins. The phylogenomic analysis confirmed its inclusion in Hypocreaceae, with its evolutionary divergence time estimated to be ~170.1 million years ago. The genome encodes a large and diverse set of genes involved in secreted peptidases, carbohydrate-active enzymes, cytochrome P450 enzymes, pathogen⁻host interactions, mycotoxins, and pigments. Moreover, C. protrusum harbors arrays of genes with the potential to produce bioactive secondary metabolites and stress response-related proteins that are significant for adaptation to hostile environments. Knowledge of the genome will foster a better understanding of the biology of C. protrusum and mycoparasitism in general, as well as help with the development of effective disease control strategies to minimize economic losses from cobweb disease in cultivated edible mushrooms.


Development and Validation of Nomogram to Predict Long-Term Prognosis of Critically Ill Patients with Acute Myocardial Infarction.

  • Yiyang Tang‎ et al.
  • International journal of general medicine‎
  • 2021‎

Acute myocardial infarction (AMI) is a common cardiovascular disease with a poor prognosis. The aim of this study was to construct a nomogram for predicting the long-term survival of critically ill patients with AMI. This nomogram will help in assessing disease severity, guiding treatment, and improving prognosis.


Differential regulation of human and murine P-selectin expression and function in vivo.

  • Zhenghui Liu‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

Leukocytes roll on P-selectin after its mobilization from secretory granules to the surfaces of platelets and endothelial cells. Tumor necrosis factor (TNF), IL-1β, and lipopolysaccharide increase synthesis of P-selectin in murine but not in human endothelial cells. To explore the physiological significance of this difference in gene regulation, we made transgenic mice bearing the human Selp gene and crossed them with mice lacking murine P-selectin (Selp(-/-)). The transgenic mice constitutively expressed human P-selectin in platelets, endothelial cells, and macrophages. P-selectin mediated comparable neutrophil migration into the inflamed peritoneum of transgenic and wild-type (WT) mice. Leukocytes rolled similarly on human or murine P-selectin on activated murine platelets and in venules of the cremaster muscle subjected to trauma. However, TNF increased murine P-selectin in venules, slowing rolling and increasing adhesion, whereas it decreased human P-selectin, accelerating rolling and decreasing adhesion. Both P- and E-selectin mediated basal rolling in the skin of WT mice, but E-selectin dominated rolling in transgenic mice. During contact hypersensitivity, murine P-selectin messenger (m) RNA was up-regulated and P-selectin was essential for leukocyte recruitment. However, human P-selectin mRNA was down-regulated and P-selectin contributed much less to leukocyte recruitment. These findings reveal functionally significant differences in basal and inducible expression of human and murine P-selectin in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: