Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Replication and meta-analysis of TMEM132D gene variants in panic disorder.

  • A Erhardt‎ et al.
  • Translational psychiatry‎
  • 2012‎

A recent genome-wide association study in patients with panic disorder (PD) identified a risk haplotype consisting of two single-nucleotide polymorphisms (SNPs) (rs7309727 and rs11060369) located in intron 3 of TMEM132D to be associated with PD in three independent samples. Now we report a subsequent confirmation study using five additional PD case-control samples (n = 1670 cases and n = 2266 controls) assembled as part of the Panic Disorder International Consortium (PanIC) study for a total of 2678 cases and 3262 controls in the analysis. In the new independent samples of European ancestry (EA), the association of rs7309727 and the risk haplotype rs7309727-rs11060369 was, indeed, replicated, with the strongest signal coming from patients with primary PD, that is, patients without major psychiatric comorbidities (n = 1038 cases and n = 2411 controls). This finding was paralleled by the results of the meta-analysis across all samples, in which the risk haplotype and rs7309727 reached P-levels of P = 1.4e-8 and P = 1.1e-8, respectively, when restricting the samples to individuals of EA with primary PD. In the Japanese sample no associations with PD could be found. The present results support the initial finding that TMEM132D gene contributes to genetic susceptibility for PD in individuals of EA. Our results also indicate that patient ascertainment and genetic background could be important sources of heterogeneity modifying this association signal in different populations.


Dimer model for the microfibrillar protein fibulin-2 and identification of the connecting disulfide bridge.

  • T Sasaki‎ et al.
  • The EMBO journal‎
  • 1997‎

Fibulin-2 is a novel extracellular matrix protein frequently found in close association with microfibrils containing either fibronectin or fibrillin. The entire protein and its predicted domains were obtained as recombinant products and examined by ultracentrifugation and electron microscopy. This demonstrated a disulfide-linked homodimer of 175 kDa subunits. Partial reduction to monomers identified specifically an odd Cys574 residue responsible for dimer formation in one of three anaphylatoxin-like modules that constitute the central globular domain I (13 kDa) of fibulin-2. Furthermore, a Cys574-Ser mutation abolished disulfide connection but not non-covalent dimerization of fibulin-2. The C-terminal region (85 kDa) was shown to represent a 35-nm-long rod consisting of 11 calcium-binding EGF-like modules (domain II) and a small terminal globe (domain III). The unique N-terminal domain N (55 kDa) was also rod-shaped (approximately 38 nm) and rich in galactosamine indicating extensive O-glycosylation. A dimer model is proposed indicating mainly a rod-like shape of 80 nm length based on an anti-parallel association of two subunits through their domains I. This model also implies alignment of domains II and N between different subunits. This was demonstrated by surface plasmon resonance assay which showed a distinct interaction between domains N and II with a Kd of approximately 0.7 microM.


Crystal structure of the angiogenesis inhibitor endostatin at 1.5 A resolution.

  • E Hohenester‎ et al.
  • The EMBO journal‎
  • 1998‎

A number of extracellular proteins contain cryptic inhibitors of angiogenesis. Endostatin is a 20 kDa C-terminal proteolytic fragment of collagen XVIII that potently inhibits endothelial cell proliferation and angiogenesis. Therapy of experimental cancer with endostatin leads to tumour dormancy and does not induce resistance. We have expressed recombinant mouse endostatin and determined its crystal structure at 1.5 A resolution. The structure reveals a compact fold distantly related to the C-type lectin carbohydrate recognition domain and the hyaluronan-binding Link module. The high affinity of endostatin for heparin is explained by the presence of an extensive basic patch formed by 11 arginine residues. Endostatin may inhibit angiogenesis by binding to the heparan sulphate proteoglycans involved in growth factor signalling.


A novel function of enolase from rabbit muscle; an immunoglobulin production stimulating factor.

  • T Sugahara‎ et al.
  • Biochimica et biophysica acta‎
  • 1998‎

Rabbit muscle enolase stimulates immunoglobulin production by a human hybridoma line, HB4C5 cells under serum-free condition. IgM productivity of HB4C5 cells was enhanced more than 20-fold by this enzyme at 220 micro/ml. Human peripheral blood lymphocytes were also facilitated their IgM and IgG productivity in the serum-free medium. However, baker's yeast enolase was ineffective to accelerate immunoglobulin production by HB4C5 cells, in spite of the same specific enzymatic activity as rabbit muscle enolase. There were differences in sensitivities against heat treatment and trypsin digestion between IPSF and enzymatic activities of enolase. These results imply that the immunoglobulin production stimulating effect of rabbit muscle enolase is irrelevant to its enzymatic function and reaction products. This fact also means that this enzyme has another function other than enzymatic one in glycolysis. Rabbit muscle enolase enhanced IgM production of transcription-suppressed HB4C5 cells treated with actinomycin D. Cycloheximide treatment of HB4C5 cells was useless to inhibit the expression of immunoglobulin production stimulating activity. However, inhibition of post-transcriptional process by monensin invalidated the activity of enolase. These findings suggest that enolase from rabbit muscle accelerates the steps between translation and post-translational processes to enhance immunoglobulin productivity. In addition, laser confocal microscopic analysis revealed that enolase from rabbit muscle was subsequently incorporated by HB4C5 cells.


[A randomized early phase II study of l-leucovorin and 5-fluorouracil in gastric cancer. l-Leucovorin and 5-FU Study Group].

  • T Sasaki‎ et al.
  • Gan to kagaku ryoho. Cancer & chemotherapy‎
  • 1995‎

A randomized early phase II study using l-leucovorin (l-LV) and 5-fluorouracil (5-FU) in gastric cancer was conducted. The administration schedules: Arm A was 250 mg/m2 of l-LV and 600 mg/m2 of 5-FU weekly, arm B was 100 mg/m2 of l-LV and 370 mg/m2 of 5-FU for 5 consecutive days, and arm C was 10 mg/m2 of l-LV and 370 mg/m2 of 5-FU for 5 consecutive days. PR was obtained in 10/28 (35.7%) of arm A, 7/28 (25.0%) of arm B and 0/17 (0%) of arm C, in complete cases. In eligible cases, 30.3%, 21.9% and 0%, respectively. Because there was no responder in arm C, the entry to arm C was stopped by controller at the point where 17 patients were treated with arm C. Median survival time was 9.6 months in arm A, 8.0 months in arm B and 5.9 months in arm C. Major toxicities were stomatitis, diarrhea and neutropenia. Stomatitis was seen more in arm B and C than in arm A. These data suggest that the high dose of l-LV and 5-FU seems to be a very promising combination, but there was no responder using low-dose l-LV schedule against gastric cancer. We thus selected arm A for the next late phase II study against gastric cancer.


Twelve oxo-eicosatetraenoic acid induces fetal membrane release after delivery in cows.

  • H Kamada‎ et al.
  • Placenta‎
  • 2012‎

Fetal fibroblast cell culture from cotyledons of bovine placenta and animal experiments close to term were used to elucidate afterbirth release and factors missing in the signal transduction mechanism for retained fetal membranes (RFM) after delivery. In cell culture the addition of arachidonic acid (Ara) to the medium caused rapid release to free floating cell in the culture dish, accompanied by matrix metalloproteinase (MMP) activation, being consistent with previous in vivo observations, where a relation between MMP and fetal membrane release had been shown. Ara-induced cell floating was not inhibited by the addition of cyclooxygenase (COX) inhibitor, and not induced by the addition of PGF2α or PGE2 to replace Ara, while 12-lipoxygenase (12-LOX) metabolite of Ara, 12-oxo-eicosatetraenoic acid (12-oxoETE), strongly induced cell floating. In the animal experiments, 12-oxoETE injection to delivery-induced cows (n = 6) using prostaglandin (PG) and dexamethazone resulted in rapid release of fetal membranes. In cows with natural calf delivery, a 12-oxoETE peak (11.7-16.8 ng/ml) was observed in maternal blood plasma prior to release of fetal membranes. This investigation thus gives new indications for that the mediator for fetal membrane release is 12-oxoETE and not PG.


A multicentre randomised phase II trial of gemcitabine alone vs gemcitabine and S-1 combination therapy in advanced pancreatic cancer: GEMSAP study.

  • Y Nakai‎ et al.
  • British journal of cancer‎
  • 2012‎

This randomised phase II trial compared gemcitabine alone vs gemcitabine and S-1 combination therapy in advanced pancreatic cancer.


Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells.

  • B Krischek‎ et al.
  • Neuroscience‎
  • 2008‎

Little is known about the pathology and pathogenesis of the rupture of intracranial aneurysms. For a better understanding of the molecular processes involved in intracranial aneurysm (IA) formation we performed a gene expression analysis comparing ruptured and unruptured aneurysm tissue to a control artery. Tissue samples of six ruptured and four unruptured aneurysms, and four cerebral arteries serving as controls, were profiled using oligonucleotide microarrays. Gene ontology classification of the differentially expressed genes was analyzed and regulatory functional networks and canonical pathways were identified with a network-based computational pathway analysis tool. Real time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical staining were performed as confirmation. Analysis of aneurysmal and control tissue revealed 521 differentially expressed genes. The most significantly associated gene ontology term was antigen processing (P=1.64E-16). Further network-based analysis showed the top scoring regulatory functional network to be built around overexpressed major histocompatibility class (MHC) I and II complex related genes and confirmed the canonical pathway "Antigen Presentation" to have the highest upregulation in IA tissue (P=7.3E-10). Real time RT-PCR showed significant overexpression of MHC class II genes. Immunohistochemical staining showed strong positivity for MHC II molecule specific antibody (HLA II), for CD68 (macrophages, monocytes), for CD45RO (T-cells) and HLA I antibody. Our results offer strong evidence for MHC class II gene overexpression in human IA tissue and that antigen presenting cells (macrophages, monocytes) play a key role in IA formation.


MOB1-YAP1/TAZ-NKX2.1 axis controls bronchioalveolar cell differentiation, adhesion and tumour formation.

  • K Otsubo‎ et al.
  • Oncogene‎
  • 2017‎

Mps One Binder Kinase Activator (MOB)1A/1B are core components of the Hippo pathway. These proteins, which coactivate LArge Tumour Suppressor homologue kinases, are also tumour suppressors. To investigate MOB1A/B's roles in normal physiology and lung cancer, we generated doxycycline (Dox)-inducible, bronchioalveolar epithelium-specific, null mutations of MOB1A/B in mice (SPC-rtTA/(tetO)7-Cre/Mob1aflox/flox/Mob1b-/-; termed luMob1DKO mice). Most mutants (70%) receiving Dox in utero (luMob1DKO (E6.5-18.5) mice) died of hypoxia within 1 h post-birth. Their alveolar epithelial cells showed increased proliferation, impaired YAP1/TAZ-dependent differentiation and decreased surfactant protein production, all features characteristic of human respiratory distress syndrome. Intriguingly, mutant mice that received Dox postnatally (luMob1DKO (P21-41) mice) did not develop spontaneous lung adenocarcinomas, and urethane treatment-induced lung tumour formation was decreased (rather than increased). Lungs of luMob1DKO (P21-41) mice exhibited increased detachment of bronchiolar epithelial cells and decreased numbers of the bronchioalveolar stem cells thought to initiate lung adenocarcinomas. YAP1/TAZ-NKX2.1-dependent expression of collagen XVII, a key hemidesmosome component, was also reduced. Thus, a MOB1-YAP1/TAZ-NKX2.1 axis is essential for normal lung homeostasis and expression of the collagen XVII protein necessary for alveolar stem cell maintenance in the lung niche.


CAKbeta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus.

  • Y Huang‎ et al.
  • Neuron‎
  • 2001‎

Long-term potentiation (LTP) is an activity-dependent enhancement of synaptic efficacy, considered a model of learning and memory. The biochemical cascade producing LTP requires activation of Src, which upregulates the function of NMDA receptors (NMDARs), but how Src becomes activated is unknown. Here, we show that the focal adhesion kinase CAKbeta/Pyk2 upregulated NMDAR function by activating Src in CA1 hippocampal neurons. Induction of LTP was prevented by blocking CAKbeta/Pyk2, and administering CAKbeta/Pyk2 intracellularly mimicked and occluded LTP. Tyrosine phosphorylation of CAKbeta/Pyk2 and its association with Src was increased by stimulation that produced LTP. Finally, CAKbeta/Pyk2-stimulated enhancement of synaptic AMPA responses was prevented by blocking NMDARS, chelating intracellular Ca(2+), or blocking Src. Thus, activating CAKbeta/Pyk2 is required for inducing LTP and may depend upon downstream activation of Src to upregulate NMDA receptors.


Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor.

  • K D Fischer‎ et al.
  • Current biology : CB‎
  • 1998‎

Vav is a guanine-nucleotide exchange factor for the Rho-like small GTPases RhoA, Rac1 and Cdc42, which regulate cytoskeletal reorganization and activation of stress-activated protein kinases (SAPK/JNKs). Vav is expressed in hematopoietic cells and is phosphorylated in T and B cells following activation of various growth factor or antigen receptors. Vav interacts with several signaling molecules in T cells, but the functional relevance of these interactions is established only for Slp76: they cooperate to induce activity of the transcription factor NF-AT and interleukin-2 expression. We have investigated the role of Vav in T cells by generating vav-/- mice.


Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice.

  • M Shibata‎ et al.
  • Neuroscience‎
  • 2003‎

We sought to clarify the involvement of caspase-12, a representative molecule related to endoplasmic reticulum (ER) stress-induced cell-death signaling pathways, in neuronal death resulting from ischemia/reperfusion in mice. Transient focal cerebral ischemia (1 h) was produced by intraluminal occlusion of the middle cerebral artery (MCA). We assessed the expression patterns of caspase-12, Bip/GRP78, an ER-resident molecular chaperone whose expression serves as a good marker of ER stress, and caspase-7 by Western blotting and/or immunohistochemistry. Double-fluorescent staining of caspase-12 immunohistochemistry and the terminal deoxynucleotidyl transferase-mediated DNA nick-end labeling (TUNEL) method was performed to clarify the involvement of caspase-12 in cell death. We confirmed that ER stress was induced during reperfusion in our model, as witnessed by up-regulated Bip/GRP78 expression in the MCA territory. Western blot analysis revealed that caspase-12 activation occurred at 5-23 h of reperfusion, and immunoreactivity for caspase-12 was enhanced mainly in striatal neurons on the ischemic side at the same time points. We found the co-localization of caspase-12 immunoreactivity and DNA fragmentation detectable by the TUNEL method. We did not detect the presence of caspase-7 in the ER fraction at the period of caspase-12 cleavage. Our results imply that cerebral ischemia/reperfusion induces ER stress and that caspase-12 activation concurred with ER stress. Caspase-12 seems to be involved in neuronal death induced by ischemia/reperfusion. Caspase-7 is not likely to contribute to the cleavage of caspase-12 in our experimental model.


Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats.

  • A Kuwabara‎ et al.
  • Diabetologia‎
  • 2010‎

The glomerular endothelial layer is coated by the endothelial surface layer (ESL), which is suggested to play a role in regulation of the permselectivity of macromolecules. Production of heparanase, a degrading enzyme of the ESL, is induced by reactive oxygen species (ROS). We hypothesised that oxidative stress could cause deterioration of the glomerular ESL by induction of heparanase, resulting in increased glomerular permeability.


Diet-induced alteration of fatty acid synthase in prostate cancer progression.

  • M Huang‎ et al.
  • Oncogenesis‎
  • 2016‎

Fatty acid synthase (FASN) is a cytosolic metabolic enzyme that catalyzes de novo fatty acid synthesis. A high-fat diet (HFD) is attributed to prostate cancer (PCa) progression, but the role FASN on HFD-mediated PCa progression remains unclear. We investigated the role of FASN on PCa progression in LNCaP xenograft mice fed with HFD or low-fat diet (LFD), in PCa cells, and in clinical PCa. The HFD promoted tumour growth and FASN expression in the LNCaP xenograft mice. HFD resulted in AKT and extracellular signal-regulated kinase (ERK) activation and 5' adenosine monophosphate-activated protein kinase (AMPK) inactivation. Serum FASN levels were significantly lower in the HFD group (P=0.026) and correlated inversely with tumour volume (P=0.022). Extracellular FASN release was enhanced in the PCa cells with phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinase (MAPK) inhibition and AMPK signalling activation. FASN inhibition resulted in decrease of PCa cell proliferation through PI3K/MAPK downregulation and AMPK activation. Furthermore, AMPK activation was associated with FASN downregulation and PI3K/MAPK inactivation. Clinically, high FASN expression was significantly associated with high Gleason scores and advanced pathological T stage. Moreover, FASN expression was markedly decreased in the PCa response to androgen deprivation therapy and chemotherapy. HFD modulates FASN expression, which may be an important mechanism in HFD-associated PCa progression. Furthermore, a critical stimulatory loop exists between FASN and the PI3K/MAPK system, whereas AMPK signalling was associated with suppression. These may offer appropriate targets for chemoprevention and cancer therapy in HFD-induced PCa.


Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae.

  • H Imamura‎ et al.
  • The EMBO journal‎
  • 1997‎

The RHO1 gene encodes a homologue of mammalian RhoA small G-protein in the yeast Saccharomyces cerevisiae. Rho1p is required for bud formation and is localized at a bud tip or a cytokinesis site. We have recently shown that Bni1p is a potential target of Rho1p. Bni1p shares the FH1 and FH2 domains with proteins involved in cytokinesis or establishment of cell polarity. In S. cerevisiae, there is an open reading frame (YIL159W) which encodes another protein having the FH1 and FH2 domains and we have named this gene BNR1 (BNI1 Related). Bnr1p interacts with another Rho family member, Rho4p, but not with Rho1p. Disruption of BNI1 or BNR1 does not show any deleterious effect on cell growth, but the bni1 bnr1 mutant shows a severe temperature-sensitive growth phenotype. Cells of the bni1 bnr1 mutant arrested at the restrictive temperature are deficient in bud emergence, exhibit a random distribution of cortical actin patches and often become multinucleate. These phenotypes are similar to those of the mutant of PFY1, which encodes profilin, an actin-binding protein. Moreover, yeast two-hybrid and biochemical studies demonstrate that Bni1p and Bnr1p interact directly with profilin at the FH1 domains. These results indicate that Bni1p and Bnr1p are potential targets of the Rho family members, interact with profilin and regulate the reorganization of actin cytoskeleton.


Prognostic nomogram for nonresectable pancreatic cancer treated with gemcitabine-based chemotherapy.

  • T Hamada‎ et al.
  • British journal of cancer‎
  • 2014‎

A nomogram is progressively being used as a useful predictive tool for cancer prognosis. A nomogram to predict survival in nonresectable pancreatic cancer treated with chemotherapy has not been reported.


Detection of O-mannosyl glycans in rabbit skeletal muscle alpha-dystroglycan.

  • T Sasaki‎ et al.
  • Biochimica et biophysica acta‎
  • 1998‎

alpha-Dystroglycan, which is a cell surface component of dystroglycan complex, is known to bind laminin in basal lamina of muscle cells and Schwann cells. We found previously that a novel O-glycan, Siaalpha2-3Galbeta1-4GlcNAcbeta1-2Man, is the major oligosaccharide in bovine peripheral nerve alpha-dystroglycan, and that this structure might mediate the binding of laminin. In order to determine whether this structure is specific for peripheral nerve alpha-dystroglycan or present on different forms of alpha-dystroglycan, we analyzed the structures of the sialylated O-glycans of rabbit skeletal muscle alpha-dystroglycan. Their structures were elucidated to be a mixture of a core 1 O-glycan and the same O-mannosyl glycan that we found in bovine peripheral nerve. These results indicate that alpha-dystroglycan in different species and tissues share a common structure of its major O-linked acidic carbohydrate, suggesting its relevance to the basic functional role of alpha-dystroglycan.


Localization of glutathione and induction of glutathione synthesis-related proteins in mouse brain by low doses of gamma-rays.

  • S Kojima‎ et al.
  • Brain research‎
  • 1998‎

First, we determined the cerebral localization of reduced glutathione (GSH) in normal mice by means of autoradiography using 99mTc-meso-hexamethyl propylene oxime. A highly specific localization of GSH in the cerebellum and hippocampus was observed. Secondly, we measured the elevation of GSH level in the brain after low-dose gamma-irradiation. The cerebral GSH levels increased soon after irradiation with 50 cGy of gamma-rays, reaching a maximum at 3 h post-treatment, then remaining significantly higher than that of the non-irradiated control until 12 h and returning to the control level by 24 h. Thirdly, we examined the induction of the activities and the mRNAs of proteins involved in the synthesis and regeneration of GSH in the brain of mice subjected to low-dose gamma-ray irradiation. The level of mRNA for gamma-glutamylcysteine synthetase was significantly increased at 0.5 h, and remained high until 2 h post-irradiation (50 cGy). The level was transiently lowered to the non-irradiated control level at 3 h and slightly increased again after 6 h post-irradiation. gamma-Glutamylcysteine synthetase activity was significantly increased 3 h after irradiation, and remained high up to 24 h post-irradiation. As for glutathione reductase, the mRNA level was increased at 0.5 h, and peaked strongly at 2 h, while the enzyme activity was significantly increased at 6 h after irradiation, and continued to increase up to 24 h. The level of mRNA for thioredoxin, which contributes to GSH biosynthesis by supplying cysteine to the de novo pathway, peaked between 0.5 h and 2 h post-irradiation, and rapidly declined thereafter. The content of thioredoxin showed a transient decrease immediately after irradiation, but was then remarkably elevated, reaching a maximum at 3 h, and thereafter declining sharply. These results indicate that the increase in endogenous GSH in mouse brain soon after low-dose gamma-ray irradiation is a consequence of the induction of GSH synthesis-related proteins and occurs via both the de novo synthesis and the regeneration pathways.


Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN.

  • V Stambolic‎ et al.
  • Cell‎
  • 1998‎

PTEN is a tumor suppressor with sequence homology to protein tyrosine phosphatases and the cytoskeletal protein tensin. mPTEN-mutant mouse embryos display regions of increased proliferation. In contrast, mPTEN-deficient immortalized mouse embryonic fibroblasts exhibit decreased sensitivity to cell death in response to a number of apoptotic stimuli, accompanied by constitutively elevated activity and phosphorylation of protein kinase B/Akt, a crucial regulator of cell survival. Expression of exogenous PTEN in mutant cells restores both their sensitivity to agonist-induced apoptosis and normal pattern of PKB/Akt phosphorylation. Furthermore, PTEN negatively regulates intracellular levels of phosphatidylinositol (3,4,5) trisphosphate in cells and dephosphorylates it in vitro. Our results show that PTEN may exert its role as a tumor suppressor by negatively regulating the PI3'K/PKB/Akt signaling pathway.


Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin.

  • T Sasaki‎ et al.
  • The EMBO journal‎
  • 1998‎

The C-terminal domain NC1 of mouse collagen XVIII (38 kDa) and the shorter mouse and human endostatins (22 kDa) were prepared in recombinant form from transfected mammalian cells. The NC1 domain aggregated non-covalently into a globular trimer which was partially cleaved by endogenous proteolysis into several monomers (25-32 kDa) related to endostatin. Endostatins were obtained in a highly soluble, monomeric form and showed a single N-terminal sequence which, together with other data, indicated a compact folding. Endostatins and NC1 showed a comparable binding activity for the microfibrillar fibulin-1 and fibulin-2, and for heparin. Domain NC1, however, was a distinctly stronger ligand than endostatin for sulfatides and the basement membrane proteins laminin-1 and perlecan. Immunological assays demonstrated endostatin epitopes on several tissue components (22-38 kDa) and in serum (120-300 ng/ml), the latter representing the smaller variants. The data indicated that the NC1 domain consists of an N-terminal association region (approximately 50 residues), a central protease-sensitive hinge region (approximately 70 residues) and a C-terminal stable endostatin domain (approximately 180 residues). They also demonstrated that proteolytic release of endostatin can occur through several pathways, which may lead to a switch from a matrix-associated to a more soluble endocrine form.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: