Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Growth hormone-releasing hormone (GHRH)-secreting pancreatic tumor in a patient with multiple endocrine neoplasia type I.

  • T Sano‎ et al.
  • The American journal of surgical pathology‎
  • 1987‎

A growth hormone-releasing hormone (GHRH)-secreting pancreatic tumor in a 36-year-old man, who had typical, familial, multiple endocrine neoplasia (MEN) type I with hyperparathyroidism and acromegaly, is described. The resected tumor, weighing 30 g, showed unusual histological features characterized by a meningioma-like arrangement of crescent-shaped cells and contained many cells that reacted with C-terminal specific antibody to GHRH-44 and a few somatostatin-immunoreactive (IR) and calcitonin-IR cells, but no GH-IR cells. A high concentration of IR-GHRH (9.8-13.2 micrograms/g wet weight tissue) with the full molecular size of GHRH-44 was detected in a tumor extract. Electron immunocytochemical study by the protein A-gold method revealed GHRH-IR granules with a mean diameter of 147 nm. After removal of the tumor, the plasma IR-GHRH level became normal (decreasing from 299 to 16.1 pg/ml) and the plasma IR-GH level also decreased, but still remained slightly high (decreasing from 42.4 to 9.6 ng/ml), suggesting the presence of an adenomatous lesion in the hypophysis.


Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes.

  • T Hirose‎ et al.
  • The EMBO journal‎
  • 1997‎

Tobacco chloroplast genes encoding a photosystem I component (psaC) and a NADH dehydrogenase subunit (ndhD) are transcribed as a dicistronic pre-mRNA which is then cleaved into short mRNAs. An RNA protection assay revealed that the cleavage occurs at multiple sites in the intercistronic region. There are two possible initiation codons in the tobacco ndhD mRNA: the upstream AUG and the AUG created by RNA editing from the in-frame ACG located 25 nt downstream. Using the chloroplast in vitro translation system, we found that translation begins only from the edited AUG. The extent of ACG to AUG editing is partial and depends on developmental and environmental conditions. In addition, the in vitro assay showed that the psaC/ndhD dicistronic mRNA is not functional and that the intercistronic cleavage is a prerequisite for both ndhD and psaC translation. Using a series of mutant mRNAs, we showed that an intramolecular interaction between an 8 nt sequence in the psaC coding region and its complementary 8 nt sequence in the 5' ndhD UTR is the negative element for translation of the dicistronic mRNA. A possible mechanism in which the differential expression of the chloroplast operon consists of functionally unrelated genes is discussed.


Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures.

  • A Suzuki‎ et al.
  • The Journal of cell biology‎
  • 2001‎

We have previously shown that during early Caenorhabditis elegans embryogenesis PKC-3, a C. elegans atypical PKC (aPKC), plays critical roles in the establishment of cell polarity required for subsequent asymmetric cleavage by interacting with PAR-3 [Tabuse, Y., Y. Izumi, F. Piano, K.J. Kemphues, J. Miwa, and S. Ohno. 1998. Development (Camb.). 125:3607--3614]. Together with the fact that aPKC and a mammalian PAR-3 homologue, aPKC-specific interacting protein (ASIP), colocalize at the tight junctions of polarized epithelial cells (Izumi, Y., H. Hirose, Y. Tamai, S.-I. Hirai, Y. Nagashima, T. Fujimoto, Y. Tabuse, K.J. Kemphues, and S. Ohno. 1998. J. Cell Biol. 143:95--106), this suggests a ubiquitous role for aPKC in establishing cell polarity in multicellular organisms. Here, we show that the overexpression of a dominant-negative mutant of aPKC (aPKCkn) in MDCK II cells causes mislocalization of ASIP/PAR-3. Immunocytochemical analyses, as well as measurements of paracellular diffusion of ions or nonionic solutes, demonstrate that the biogenesis of the tight junction structure itself is severely affected in aPKCkn-expressing cells. Furthermore, these cells show increased interdomain diffusion of fluorescent lipid and disruption of the polarized distribution of Na(+),K(+)-ATPase, suggesting that epithelial cell surface polarity is severely impaired in these cells. On the other hand, we also found that aPKC associates not only with ASIP/PAR-3, but also with a mammalian homologue of C. elegans PAR-6 (mPAR-6), and thereby mediates the formation of an aPKC-ASIP/PAR-3-PAR-6 ternary complex that localizes to the apical junctional region of MDCK cells. These results indicate that aPKC is involved in the evolutionarily conserved PAR protein complex, and plays critical roles in the development of the junctional structures and apico-basal polarization of mammalian epithelial cells.


An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3.

  • Y Izumi‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Cell polarity is fundamental to differentiation and function of most cells. Studies in mammalian epithelial cells have revealed that the establishment and maintenance of cell polarity depends upon cell adhesion, signaling networks, the cytoskeleton, and protein transport. Atypical protein kinase C (PKC) isotypes PKCzeta and PKClambda have been implicated in signaling through lipid metabolites including phosphatidylinositol 3-phosphates, but their physiological role remains elusive. In the present study we report the identification of a protein, ASIP (atypical PKC isotype-specific interacting protein), that binds to aPKCs, and show that it colocalizes with PKClambda to the cell junctional complex in cultured epithelial MDCKII cells and rat intestinal epithelia. In addition, immunoelectron microscopy revealed that ASIP localizes to tight junctions in intestinal epithelial cells. Furthermore, ASIP shows significant sequence similarity to Caenorhabditis elegans PAR-3. PAR-3 protein is localized to the anterior periphery of the one-cell embryo, and is required for the establishment of cell polarity in early embryos. ASIP and PAR-3 share three PDZ domains, and can both bind to aPKCs. Taken together, our results suggest a role for a protein complex containing ASIP and aPKC in the establishment and/or maintenance of epithelial cell polarity. The evolutionary conservation of the protein complex and its asymmetric distribution in polarized cells from worm embryo to mammalian-differentiated cells may mean that the complex functions generally in the organization of cellular asymmetry.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: